• 제목/요약/키워드: probability hypothesis density filter

검색결과 4건 처리시간 0.017초

Dual Detection-Guided Newborn Target Intensity Based on Probability Hypothesis Density for Multiple Target Tracking

  • Gao, Li;Ma, Yongjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.5095-5111
    • /
    • 2016
  • The Probability Hypothesis Density (PHD) filter is a suboptimal approximation and tractable alternative to the multi-target Bayesian filter based on random finite sets. However, the PHD filter fails to track newborn targets when the target birth intensity is unknown prior to tracking. In this paper, a dual detection-guided newborn target intensity PHD algorithm is developed to solve the problem, where two schemes, namely, a newborn target intensity estimation scheme and improved measurement-driven scheme, are proposed. First, the newborn target intensity estimation scheme, consisting of the Dirichlet distribution with the negative exponent parameter and target velocity feature, is used to recursively estimate the target birth intensity. Then, an improved measurement-driven scheme is introduced to reduce the errors of the estimated number of targets and computational load. Simulation results demonstrate that the proposed algorithm can achieve good performance in terms of target states, target number and computational load when the newborn target intensity is not predefined in multi-target tracking systems.

클러터가 존재하는 환경에서의 HPDA를 이용한 다중 표적 자동 탐지 및 추적 알고리듬 연구 (A Study of Automatic Multi-Target Detection and Tracking Algorithm using Highest Probability Data Association in a Cluttered Environment)

  • 김다솔;송택렬
    • 전기학회논문지
    • /
    • 제56권10호
    • /
    • pp.1826-1835
    • /
    • 2007
  • In this paper, we present a new approach for automatic detection and tracking for multiple targets. We combine a highest probability data association(HPDA) algorithm for target detection with a particle filter for multiple target tracking. The proposed approach evaluates the probabilities of one-to-one assignments of measurement-to-track and the measurement with the highest probability is selected to be target- originated, and the measurement is used for probabilistic weight update of particle filtering. The performance of the proposed algorithm for target tracking in clutter is compared with the existing clustering algorithm and the sequential monte carlo method for probability hypothesis density(SMC PHD) algorithm for multi-target detection and tracking. Computer simulation studies demonstrate that the HPDA algorithm is robust in performing automatic detection and tracking for multiple targets even though the environment is hostile in terms of high clutter density and low target detection probability.

검출기 융합에 기반을 둔 확률가정밀도 (PHD) 필터를 적용한 다중 객체 추적 방법 (Fusion of Local and Global Detectors for PHD Filter-Based Multi-Object Tracking)

  • 윤주홍;황영배;최병호;윤국진
    • 제어로봇시스템학회논문지
    • /
    • 제22권9호
    • /
    • pp.773-777
    • /
    • 2016
  • In this paper, a novel multi-object tracking method to track an unknown number of objects is proposed. To handle multiple object states and uncertain observations efficiently, a probability hypothesis density (PHD) filter is adopted and modified. The PHD filter is capable of reducing false positives, managing object appearances and disappearances, and estimating the multiple object trajectories in a unified framework. Although the PHD filter is robust in cluttered environments, it is vulnerable to false negatives. For this reason, we propose to exploit local observations in an RFS of the observation model. Each local observation is generated by using an online trained object detector. The main purpose of the local observation is to deal with false negatives in the PHD filtering procedure. The experimental results demonstrated that the proposed method robustly tracked multiple objects under practical situations.

Target Birth Intensity Estimation Using Measurement-Driven PHD Filter

  • Zhang, Huanqing;Ge, Hongwei;Yang, Jinlong
    • ETRI Journal
    • /
    • 제38권5호
    • /
    • pp.1019-1029
    • /
    • 2016
  • The probability hypothesis density (PHD) filter is an effective means to track multiple targets in that it avoids explicit data associations between the measurements and targets. However, the target birth intensity as a prior is assumed to be known before tracking in a traditional target-tracking algorithm; otherwise, the performance of a conventional PHD filter will decline sharply. Aiming at this problem, a novel target birth intensity scheme and an improved measurement-driven scheme are incorporated into the PHD filter. The target birth intensity estimation scheme, composed of both PHD pre-filter technology and a target velocity extent method, is introduced to recursively estimate the target birth intensity by using the latest measurements at each time step. Second, based on the improved measurement-driven scheme, the measurement set at each time step is divided into the survival target measurement set, birth target measurement set, and clutter set, and meanwhile, the survival and birth target measurement sets are used to update the survival and birth targets, respectively. Lastly, a Gaussian mixture implementation of the PHD filter is presented under a linear Gaussian model assumption. The results of numerical experiments demonstrate that the proposed approach can achieve a better performance in tracking systems with an unknown newborn target intensity.