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The probability hypothesis density (PHD) filter is an 
effective means to track multiple targets in that it avoids 
explicit data associations between the measurements and 
targets. However, the target birth intensity as a prior is 
assumed to be known before tracking in a traditional 
target-tracking algorithm; otherwise, the performance of 
a conventional PHD filter will decline sharply. Aiming at 
this problem, a novel target birth intensity scheme and an 
improved measurement-driven scheme are incorporated 
into the PHD filter. The target birth intensity estimation 
scheme, composed of both PHD pre-filter technology  
and a target velocity extent method, is introduced to 
recursively estimate the target birth intensity by using the 
latest measurements at each time step. Second, based   
on the improved measurement-driven scheme, the 
measurement set at each time step is divided into      
the survival target measurement set, birth target 
measurement set, and clutter set, and meanwhile, the 
survival and birth target measurement sets are used to 
update the survival and birth targets, respectively. Lastly, 
a Gaussian mixture implementation of the PHD filter is 
presented under a linear Gaussian model assumption. The 
results of numerical experiments demonstrate that the 
proposed approach can achieve a better performance in 
tracking systems with an unknown newborn target 
intensity. 
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I. Introduction 

In recent years, tracking based on the random finite set (RFS) 
theory [1] as an alternative to a classical data association-based 
target-tracking algorithm has attracted considerable attention. 
To obtain a computational tractable solution, three suboptimal 
approximations are the probability hypothesis density (PHD) 
[2], cardinality PHD [3], and multi-target multi-Bernoulli [4]. 
Two implementations of the three suboptimal approximations 
are applied through a Sequential Monte Carlo (SMC) method 
[5] and a Gaussian mixture (GM) [4], [6]. More recently, the 
concept of labeled RFSs has been introduced to cope with a 
multi-target tracking problem, and its implementations include 
labeled multi-Bernoulli [7] and generalized labeled multi-
Bernoulli [8], [9] approximations. These analytic 
approximations of a multi-target Bayes filter through an RFS 
and labeled RFSs have a various scope of applications 
including radar target tracking [10], [11], computer vision [12], 
[13], and sensor networks [14], [15]. 

Owing to the advantage of target state extraction and track 
generation, the Gaussian mixture PHD as a closed-form 
implementation for the PHD recursion has been extensively 
applied in a multi-target tracking field under a linear Gaussian 
model assumption. However, the target birth intensity is 
assumed to be known as a prior before tracking in a traditional 
PHD algorithm, which is inapplicable to real engineering 
applications. To overcome the drawback of the PHD filter, 
some improved approaches have been reported. In [16] and 
[17], an adaptive target birth intensity PHD filter using SMC 
approximation was presented, where the initial target birth 
intensity is formed by utilizing both the position and likelihood 
of the measurement. In the update step, the survival and birth 
targets are updated using different PHD update formula with 
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the latest measurement set. However, the algorithm proposed 
in [17] has a significant bias in terms of the target number 
under a dense clutter scenario. In addition, the birth target 
intensity may cover the entire state space, which makes the 
computational load of the adaptive algorithm relatively heavy. 
In [18], a novel detection-guided multi-target Bayesian filter is 
proposed, where the positions of unknown newborn targets are 
detected using a sequential probability ratio test-based track 
initiation method. The target birth intensity is formed through 
position estimates of the newborn targets. Owing to the fact 
that some measurements in the latest measurement set are 
forbidden to initialize newborn target tracks, the proposed 
approach in [18] cannot deal with the target birth problem 
under a scenario in which multiple targets move near each 
other. In [19], the unknown newborn target-tracking problem is 
solved from the aspect of the Gaussian component of the GM-
PHD filter. Every measurement in the latest measurement set at 
each time step is related to at least one Gaussian component in 
the new fusion scheme of the Gaussian component. Although 
the method proposed in [19] can obtain better newborn target 
intensity estimations, the proposed method suffers from a 
heavy computational load, which is nearly double that of the 
GM-PHD filter. Moreover, the proposed method is unable to 
track a newborn target under dense clutter conditions in that the 
computational burden is significantly increased. In [20] and 
[21], Zhou and others proposed a target birth intensity 
estimation algorithm for tracking visual targets, where the 
entropy distribution and coverage rate are introduced to model 
a newborn target intensity. However, an entropy distribution 
and coverage rate-based newborn target estimation scheme is 
only suitable to computer vision because the estimates of the 
birth target rely on both the intersection rate and area rate of 
different birth targets. The proposed algorithm cannot obtain a 
satisfactory level of performance when applied to radar point 
target tracking. 

Both PHD pre-filter technology [22] and velocity 
estimations [23], [24] have been previously proposed for track 
initialization in multi-target tracking. Therefore, the unknown 
newborn target intensity estimation for the PHD filter can be 
solved through the comprehensive use of these two methods. 
In addition, the PHD filter has an obvious cardinality      
bias under a dense clutter scenario. In [25] and [26], a 
measurement-driven scheme is used to decrease the bias in the 
number of targets. However, both algorithms also assume that 
the target birth intensity is known prior to the tracking. 
Moreover, in [25] the authors suppose that only one newborn 
target can appear at each time step, and the bias in the number 
of targets is still greater in [26] owing to the defect in its update 
process. 

In this paper, a novel target birth intensity estimation 

algorithm based on a measurement-driven Gaussian mixture 
PHD is proposed for a multi-target tracking system. First, a 
novel newborn target intensity approach was developed based 
on PHD pre-filter technology and a target velocity extent 
scheme. In particular, the PHD algorithm is utilized as a clutter 
pre-filter, where measurements irrelevant to newborn targets 
are discarded from the original measurement set. The 
remaining measurements are again purified using the target 
velocity extent scheme, and the possible target birth intensity 
can finally be obtained. Second, for the purpose of decreasing 
the disturbance in both clutter measurements and 
measurements originating from survival and newborn targets, 
an improved measurement-driven scheme is incorporated into 
the PHD filter, and its implementation is obtained through a 
Gaussian mixture scheme. Simulation results demonstrate that 
the proposed algorithm not only obtains better newborn target 
intensity estimations compared with another existing algorithm, 
but also achieves less computational load.  

The remainder of this paper is structured as follows.  
Section II provides a brief review of an RFS-based PHD filter 
and its Gaussian mixture implementation. The proposed target 
birth intensity scheme and improved measurement-driven 
scheme are then detailed in Section III. In Section IV, 
performance comparisons of different algorithms are presented 
under several different tracking scenarios. Finally, some 
concluding remarks are given in Section V. 

II. Background 

1. Random Finite Set and PHD Filter 

In RFS-based multi-target tracking, the multi-target states 

and multi-target observations defined as random finite sets  

are ,1 ,{ , ... , }
kk k k Nx xX 

 
and

 
,1 ,{ , ... , },

kk k k MZ z z  where 

Nk and Mk denote the target number and measurement number 

at time k, respectively. Letting 1: 11( | )kk X Zp   be the multi-

target intensity function at time k – 1, the optimal multi-target 

Bayesian iterative formulas can then be computed as 
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where | 1( | )kk k X Xf   is the state transition probability density 

function of multiple targets, gk(x) is the multi-target likelihood 

function, and s denotes the approximate Lebesgue measure of 

the state space. 
As a suboptimal alternative to a multi-target Bayesian filter, 

the PHD filter is a first-order statistical moment of a multi-
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target posterior distribution, which is composed of a prediction 
step and an update step. The prediction equation is 

| 1 1, | 1

1| 1

( )( ) ( | ) ( )

( | ) ( ) ( ).

k k kS k k k
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fpx x d

x d x
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When up-to-date measurements are available at each time 
step, the update equation can be described as 
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where pS,k and pD,k denote the survival probability and detection 

probability, respectively; ( )k z  is the clutter intensity; ( )k x  

is the intensity function of newborn targets; and | 1( | )k k x    

is the spawn intensity. 

2. Gaussian Mixture PHD Filter 

The Gaussian mixture PHD (GM-PHD) filter uses mixed 

Gaussian components to approximate the distribution of 

multiple target states, which is more suitable for a linear 

Gaussian system. Let ( ; , )m P  illustrate a Gaussian 

density with mean m and covariance P. Based on some 

necessary assumptions [6], if the posterior intensity of multi-

target states can be represented in a Gaussian mixture form at 

time k – 1, then 

 1

1 11 11
( ) ; ,kJ i i i

k kk ki
x xw mD P



  
   ,       (5) 

where 1
i
kw   is the weight of the ith Gaussian mixture, and Jk–1 

is the number of Gaussian components. The predicted intensity 

is also a Gaussian mixture at time k, and can be approximated 

as 

| 1 | 1 | 1( ) ( ) ( ) ( )s
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where | 1( )s
k k xD   is the predicted intensity of the survival 

targets, and | 1( )k k xD


  is the predicted intensity of the 

spawned targets. 

The given predicted intensity in Gaussian mixture form with 

| 1k kJ   components is 

 | 1
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k k k kk k k ki
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The posterior intensity is also then a Gaussian mixture, 

which can be described as 

| 1 ,,( ) (1 ) ( ) ( ; )
k

k k k D kD k z Z
x x D x zpD D  
   ,     (11) 
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, ||1
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


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For simplicity, the main iterative framework is briefly 
summarized as above. The whole iterative process and details 
of how to update the associated parameters in the PHD 
iteration are available in [6]. 

III. Proposed Algorithm 

In this section, a novel target birth intensity estimation 
approach is proposed, where the PHD pre-filter technology and 
target velocity extent schemes are utilized to obtain the possible 
newborn target intensity. An improved measurement-driven 
scheme is then adopted into the Gaussian mixture PHD 
framework to improve the performance of the original GM-
PHD filter. 

1. Target Birth Intensity Estimation Approach 

At each time step, the target birth intensity is initialized 
according to the estimated survival target states and 
measurements obtained at the last time step. Owing to the fact 
that the measurements may be generated from the survival 
targets, birth targets, or clutter, some clutter measurements may 
be used to model the initial birth target intensity. To eliminate 
the disturbance of these clutter measurements, the PHD filter is 
used as a clutter pre-filter to obtain the possible target birth 
intensity. Unfortunately, some clutter measurements also exist 
in the estimated target birth intensity. Therefore, the target 
velocity extent scheme is utilized to purify the estimated target 
birth intensity, and the most likely newborn target intensity can 
finally be obtained. 

To distinguish an individual target, a unique label is assigned 

for each target, which is denoted by  . Each Gaussian 

component of the individual target has the same label. Assume 

that the measurement set  
1

kMi
k k iZ z 
  is available at time k, 

and that the target set E , in which the weights of the targets 

are bigger than the given threshold at time k – 1, can be 

obtained as 

 1 1: , 1, ... ,ii
E k k Th ki Jw w     ,        (13) 

where wTh is a preset state extraction threshold defined in the 
original GM-PHD filter, and Jk–1 is the number of Gaussian 
components. 

For all targets in E , a possible associated measurement set 

ZE,k can be obtained at time step k as 
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where Hk is the measurement matrix, Sk is the measurement 
residual covariance matrix, and Rk is the measurement noise 
covariance. Unique(x) is a function that can extract different 
targets without repeat targets from a set, and numel(x) is also a 
function that can compute the cardinality of a set. Both the 
residual measurement set ZR,k and the cardinality of ZR,k for the 
birth targets, spawning targets, and clutter can be obtained as 

, ,R k k E kZ Z Z    and              (19) 

, ,R k k E kM M M  .                 (20) 

In the proposed target birth intensity estimation approach, the 
newborn target intensity is initialized with all measurements in 
ZR,k, which can be approximated as 

 ,
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Each birth target is assigned with a unique label, and a target 

birth intensity label set init ,k  can be obtained by 

 ,1
, ,init , , ,, ... , , ... , 1:R kMi
k kk k R ki M           .     (25) 

In the initial process of the target birth intensity, some clutter 

measurements exist in the residual measurement set, and are 

used to model the initial target birth intensity. To obtain the 

possible newborn targets from the initial birth target intensity at 

time k, PHD technology is used to eliminate the initial target 

birth intensity originating from the clutter measurements. 

Assume that the latest measurement set   1

1 1 1

kMj
k k j

Z z


  
  is 

available at time k + 1, which is utilized to update the initialized 

target birth intensity init ,k . Using the PHD algorithm as a 

clutter pre-filter, some initialized birth targets coming from the 

clutter measurements can be deleted from init , .k   

Let ,
1

i j
kw   denote the weight of the target state ,

1
i j
kx   at time 

k + 1, which can be calculated as 
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After the initialized target birth intensity init ,k  has been 

updated using the latest Mk+1 measurements, a weight matrix  

Wm with a size of MR,k × Mk+1 can be formed, which is 

composed of the updated weights of the target birth intensity 

init ,k . The label ,
, 1

i j
k   of the target state ,

1
i j
kx   is the same as 

,
i

k . 
The false initialized target birth intensity, originating from the 

clutter measurements in init , ,k  is removed under the condition 
that the maximum weight of each initialized birth target in 
weight matrix Wm is less than a given threshold  . 
Meanwhile, the residual target birth intensity rema,k , its 
cardinality Mrema,k, and the residual target birth intensity label 
set rema,k  can be obtained as 
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rema, rema,( ).k knumelM                   (33) 

After using the PHD filter as clutter pre-filter step, a false 
initialized target birth intensity, relevant to most of the clutter 
measurements, is deleted from init ,k . Unfortunately, some 
clutter measurements still exist in the residual birth target 
intensity rema,k , in that a few clutter measurements are close 
to each other between the successive time steps. To further 
eliminate such noises, the target velocity extent scheme is 
introduced, and the most possible target birth intensity can be 
ultimately approximated. 

Assume that the velocity of a target is represented by 
parameter vk at time k. The maximum velocity of the ith 
survival target between time 1 and k can be obtained as  

 max 1arg max , ... , , ... , , 1: ,i i i i
j k j kv v v v         (34) 

where |x| is the absolute value function. 
Under the assumption that the maximum velocity of each 
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target is similar, the maximum velocity of the ith target can be 
utilized as the maximum velocity of all targets, that is, 

max max
iv  . Using the residual target birth intensity rema,k  

and weight matrix Wm, the most probable target birth intensity 

bir,k , its cardinality Mbir,k and its label set bir,k  can be 

approximated as 
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bir, bir ,( ),k knumelM              (40) 

where  and ||x|| denote a scaling factor and the Euclid distance 
function, respectively.  

2. Measurement-Driven Gaussian Mixture PHD Scheme 

The original GM-PHD filter updates all targets using   
each measurement in measurement set Zk at time k. The 
measurement set is composed of survival-target originated 
measurements, birth-target originated measurements, and 
clutter measurements at each time step. Not only can the clutter 
measurements degrade the performance of the GM-PHD filter, 
but a misuse of the survival-target originated measurements or 
birth-target originated measurements can also disturb the 
precision of the target estimates. In this section, an improved 
measurement-driven scheme under the GM-PHD framework 
is proposed to improve the performance of the GM-PHD filter 
in terms of both reducing the number of clutter measurements 
and degrading the possibility of misusing the target-originated 
measurements in the update process of the PHD filter. 

Based on the assumption that there are no spawned targets, 
the multi-target predicted intensity (6) can be approximated by  

| 1 , | 1( ) ( ) ( ),k k S k k kx x xD D             (41) 
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Given the predicted targets states and the newborn target 
intensity, the latest measurement set obtained at each time step 

is divided into the survival target measurement set, birth target 
measurement set, and clutter measurement set using a gating 
method. That is, when the newest measurement set Zk and its 
cardinality Mk are obtained, according to (42), the survival 
target measurement set ZS,k, composed of survival-target 
originated measurements, can be computed through (47). 
Similarly, based on (43), the birth target measurement set ,kZ , 
consisting of birth-target originated measurements, can also be 
approximated by (49). 
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T
, ,

j j
k k kk kS H P H R   , and           (50) 

2 ln( ) if 21 zGp n       ,         (51) 

where the parameters   and pG represent a gating threshold 

and the preset probability of target-originated measurements in 

the elliptical region, respectively, and nz is the measurement 

dimension. 

With the survival target measurement set ZS,k and the    

birth target measurement set , ,kZ the main steps of the 

measurement-driven GM-PHD algorithm can be described as 

follows. 
Prediction: Given that the multi-target posterior intensity is 
represented by (5), and the Gaussian mixture survival target 
intensity is computed as 

 1

, 1 1 , 1 , 11
( ) ; , ,kJ i ii

S k k S k S ki
x x m PwD



   
         (52) 

at time k, the target birth intensity can be approximated by (35). 

The multi-target predicted intensity | 1k kD   can then be 

obtained by 
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        (53) 
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  | 1 1,
i i
k k kS kpw w  ,               (54) 

1, | 1 , 1
i i

kS k k S km mF   ,  and             (55) 

T
, | 1 1 , 1 11

i i
S k k k S k kkQP F P F     ,           (56) 

where | 1k kJ   is the predicted number of Gaussian components 

of the survival targets. 

Measurement-driven: When the latest measurement set Zk is 

available at time k, the survival target measurement set ZS,k  

and birth target measurement set ,kZ  are extracted by (47) 

and (49), respectively. Given sets ZS,k and , ,kZ  a clutter 

measurement set ZC,k can be constructed using the remaining  

measurements, which have not been extracted in measurement  

set Zk. 
, , , ,C k k S k kZ Z Z Z                (57) 

For the purpose of degrading the disturbance of clutter 

measurements in the target update process and achieving a 

lighter computational load, the clutter measurement set ZC,k is 

not used in the update step of the PHD filter.  

Update: Given that the multi-target predicted intensity is 

computed using (53) at time k, the Gaussian-mixture multi-

target posterior intensity can be approximated through (58), 

where the survival targets are updated using the survival target 

measurement set ZS,k, and the newborn targets are updated 

using the birth target measurement set , .kZ  
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where ( )
,kK

  is the Kalman gain of the individual target at time 

step k. 

IV. Simulation Results 

To validate the effectiveness and robustness of the proposed 

algorithm, it is compared with the ABI-GM-PHD filter [17] by 

tracking a variable number of targets under several different 

multi-target tracking scenarios. Suppose a simulation scenario 

in which the targets move in a two-dimensional area with    

[–1,000, 1,000](m) × [–1,000, 1,000](m). At time k, the state 

vector of each target 
T

1, 2, 3, 4,[ , , , ]k k k kk x x x xx   is composed 

of both the position 
T

1, 2,[ , ]k kx x and velocity 
T

3, 4,[ , ]k kx x of 

the target. The sampling interval is configured using 1, and  

all scenarios are simulated 100 times. Each target moves 

following a dynamic model as described in (67), and the sensor 

generates measurements according to the measurement model 

using (68). 
2
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,                     (68) 

where the process noise wk and measurement noise vk are zero 
mean Gaussian white noise with covariance matrix Q = 
diag([0.4, 0.4]) and R = diag([225, 225]), respectively. 

The probabilities of detection and target survival are set to 

pD,k = 0.99 and pS,k = 0.99, respectively. The thresholds of the 

pruning and merging scheme of the Gaussian components are 

the same as those adopted in [6]. The thresholds 0.5   

and ε = 3 are selected empirically during the experiments. 
For each simulation-tracking scenario, 100 Monte Carlo runs 

are performed, where the mean number of target estimate 
(NTE) errors [27] and the optimal sub-pattern assignment 
(OSPA) [28] are used to assess the performance of the 
proposed algorithm. 
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Fig. 1. Real trajectories of nine targets and measurements. 
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where the true target set and estimated target set are denoted by 

Xk and ˆ
kX , respectively. The cut-off parameter and order 

parameter for the OSPA distance are set to c = 100 and p = 2, 

respectively. 
Scenario: As shown in Fig. 1, nine targets are tracked in the 

current tracking scenario, and the clutter rate is modeled as a 
Poisson RFS with the mean 6 210 10 .c m     The initial 
states of targets 1 and 2 are set to (1) T[ 700,700,0,0]Sm    
and (2) T[ 500, 800,0,0] ,Sm    and the two targets persist 
from 1 to 100 s in the surveillance region. The other seven 
targets, with unknown target intensity at each time step, appear 
and disappear at random times of between 1 and 100 s. 

The comparison results of the two algorithms are shown in 
Fig. 2, which demonstrate that the proposed algorithm achieves 
a better level of performance in the unknown target birth 
intensity scenario. From Fig. 2(a), it can be seen that there are 
some large peaks in the OSPA distance obtained by the 
proposed algorithm and ABI-GM-PHD filter because both 
algorithms cannot immediately detect newborn targets at the 
moment when the birth targets appear. However, the proposed 
algorithm achieves a better overall OSPA distance than that of 
the ABI-GM-PHD filter because the proposed algorithm can 
better estimate the newborn target intensity, and eliminate the 
disturbance of target-originated measurements in the update 
step. The NTE of the two algorithms shown in Fig. 2(b) also 
illustrates the better performance of the proposed algorithm, 
where the mean number of target estimate errors of the 
proposed algorithm is relatively low. 

To evaluate the effectiveness of the proposed algorithm in a 

complex tracking scenario, varied clutter rates are considered 

to compare the performance of the different algorithms. The 

clutter rate c  varies from 6 21 10 m   to 6 230 10 m   

with an interval of 6 25 10 m   in each clutter rate experiment, 

whereas the detection probability pD,k is set to 0.99. A  

Fig. 2. Comparison between different algorithms: (a) OSPA 
distance and (b) NTE. 
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performance comparison of the proposed algorithm and the 
ABI-GM-PHD filter is given in Fig. 3. The simulation results 
show that the efficiency of the two algorithms declines as the 
clutter rate increases. However, both the NTE and the running 
time obtained from the proposed algorithm maintain a lower 
increase compared with the ABI-GM-PHD filter because the 
proposed target birth intensity approach can accurately estimate 
the newborn target intensity before each iteration of the PHD 
filter, and the improved measurement-driven scheme degrades 
the disturbance of the measurements when updating both the 
survival and newborn targets. Owing to the fact that most 
clutter measurements are eliminated from the measurement set 
at each time step, and do not participate in each update step of 
the PHD filter, the running time of the proposed algorithm 
maintains a very low increase in high clutter rate scenarios. 

The performance comparison of the two algorithms was also 
studied from the aspect of various detection probabilities. The 
detection probability is initially set to pD,k = 0.8, and terminated 
at pD,k = 1, where the experimental interval of the detection 
probability is 0.5. Moreover, the clutter rate 

6 210 10c m     
is fixed for each detection probability experiment. Figure 4 



1026   Huanqing Zhang et al. ETRI Journal, Volume 38, Number 5, October 2016 
http://dx.doi.org/10.4218/etrij.16.0116.0040 

Fig. 3. Results of different algorithms for varied clutter rates with
detection probability pD,k = 0.99: (a) OSPA distance, (b)
NTE, and (c) running time. 
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illustrates the performance comparison between the proposed 
algorithm and the ABI-GM-PHD filter, where the performance 
of both algorithms has been improved to a certain extent as the 
detection probability increases. Not only does the proposed 
algorithm clearly achieve a lower OSPA distance, its NTE also 
decreases to the lowest level. 

In addition, the running time obtained from the proposed 
algorithm remains at a low level, far below than that of the 

Fig. 4. Results of different algorithms for varied detection 

probabilities with clutter rate λc = 10 × 10–6 m–2: (a) 

OSPA distance, (b) NTE, and (c) running time. 
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ABI-GM-PHD filter. From the results of various detection 
probability experiments, it can be concluded that the proposed 
approach can be applied to track the unknown prior target birth 
intensity under relatively low-detection probability scenarios.  

For a better study on the proposed algorithm, different 
measurement noises were applied. Each measurement noise 
varied from a range of 5 to 30 m with an experimental interval 
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Fig. 5. Results of different algorithms for varied measurement
noises with clutter rate 6 210 10c m     and detection

probability , 0.99D kp  : (a) OSPA distance, (b) NTE, and

(c) running time. 
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of 5 m, where the clutter rate and detection probability were  
set to 6 210 10c m     and pD,k = 0.99, respectively, and 
remained unchanged in each measurement noise simulation. 
Figure 5 illustrates the comparison results of the proposed 
algorithm and the ABI-GM-PHD filter under different 
measurement noises. As each measurement noise increases, the 

efficiency of the two algorithms decreases. However, it is clear 
that both the OSPA distance and NTE of the proposed 
algorithm are lower than those of the ABI-GM-PHD filter, and 
that the increment speed of the NTE of the proposed algorithm 
changes more slowly than that of the ABI-GM-PHD filter. In 
particular, the running time obtained from the proposed 
algorithm remains substantially unchanged, whereas the 
running time of the ABI-GM-PHD filter has a significant 
increase. 

V. Conclusion 

In this paper, within the framework of the Gaussian mixture 
probability hypothesis density, an improved multi-target 
tracking algorithm was proposed to cope with a multi-target 
tracking system where prior knowledge of the target birth 
intensity is unknown. The proposed algorithm is composed of 
a newborn target intensity scheme and an improved 
measurement-driven scheme. For newborn target intensity 
estimation, both a PHD pre-filter technique and a target 
velocity extent method are employed to recursively estimate 
the target birth intensity at each time step. Specifically, the 
PHD filter is first adopted as a clutter pre-filter to remove 
possible clutter from the latest measurement set at the current 
time step, and the target velocity extent method is then utilized 
to obtain the most likely newborn target measurements, which 
are used to approximate the ultimate target birth intensity. To 
reduce the computational burden of the original PHD filter and 
improve the estimation accuracy, an improved measurement-
driven scheme was proposed, where the measurement set at 
each time step is divided into the survival target measurement 
set, birth target measurement set, and clutter measurement set. 
In the update step of the proposed algorithm, the survival 
targets are updated using the survival target measurement set, 
newborn targets are updated using the target birth measurement 
set, and the clutter measurement set is prohibited to participate 
in the update process. Simulation results demonstrate that   
the proposed algorithm can effectively achieve multi-target 
tracking in tracking systems with unknown newborn target 
intensity, and that it has a strong robustness. 

As future work, the proposed algorithm will be utilized    
to estimate the clutter measurement intensity, and a more 
complicated environment, that is, spawning targets, will also be 
considered to verify the performance of the proposed algorithm.  
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