• Title/Summary/Keyword: probability forecast

Search Result 157, Processing Time 0.039 seconds

A study on solar radiation prediction using medium-range weather forecasts (중기예보를 이용한 태양광 일사량 예측 연구)

  • Sujin Park;Hyojeoung Kim;Sahm Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.1
    • /
    • pp.49-62
    • /
    • 2023
  • Solar energy, which is rapidly increasing in proportion, is being continuously developed and invested. As the installation of new and renewable energy policy green new deal and home solar panels increases, the supply of solar energy in Korea is gradually expanding, and research on accurate demand prediction of power generation is actively underway. In addition, the importance of solar radiation prediction was identified in that solar radiation prediction is acting as a factor that most influences power generation demand prediction. In addition, this study can confirm the biggest difference in that it attempted to predict solar radiation using medium-term forecast weather data not used in previous studies. In this paper, we combined the multi-linear regression model, KNN, random fores, and SVR model and the clustering technique, K-means, to predict solar radiation by hour, by calculating the probability density function for each cluster. Before using medium-term forecast data, mean absolute error (MAE) and root mean squared error (RMSE) were used as indicators to compare model prediction results. The data were converted into daily data according to the medium-term forecast data format from March 1, 2017 to February 28, 2022. As a result of comparing the predictive performance of the model, the method showed the best performance by predicting daily solar radiation with random forest, classifying dates with similar climate factors, and calculating the probability density function of solar radiation by cluster. In addition, when the prediction results were checked after fitting the model to the medium-term forecast data using this methodology, it was confirmed that the prediction error increased by date. This seems to be due to a prediction error in the mid-term forecast weather data. In future studies, among the weather factors that can be used in the mid-term forecast data, studies that add exogenous variables such as precipitation or apply time series clustering techniques should be conducted.

Seasonal Rainfall Outlook of Nakdong River Basin Using Nonstationary Frequency Analysis Model and Climate Information (기상인자와 비정상성 빈도해석 모형을 이용한 낙동강유역의 계절강수량 전망)

  • Kwon, Hyun-Han;Lee, Jeong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.5
    • /
    • pp.339-350
    • /
    • 2011
  • This study developed a climate informed Bayesian nonstationary frequency model which allows us to forecast seasonal summer rainfall at Nakdong River. We constructed a 37-year summer rainfall data set from 10 weather stations within Nakdong river basin, and two climate indices from sea surface temperature (SST) and outgoing longwave radiation (OLR) were derived through correlation analysis. The selected SST and OLR have been widely acknowledged as a climate driver for summer rainfall. The developed model was applied first to the 2010-year summer rainfall (888.1 mm) in order to assure ourself. We demonstrated model performance by comparing posterior distributions. It was confirmed that the proposed model is able to produce a reasonable forecast. The forecasted value is about 858.2 mm, and the difference between forecast and observation is about 30 mm. As the second case study, 2011-year summer rainfall forecast was made using an observed winter SSTs and an assumed 50% value of OLRs. The forecasted value is 967.7 mm and associated exceedance probability over average summer rainfall 680 mm is 92.9%. In addition, 50-year return period for summer rainfall was projected through the nonstationary frequency model. An exceedance probability over 1,400 mm corresponding to the 50-year return level is about 73.7%.

BGRcast: A Disease Forecast Model to Support Decision-making for Chemical Sprays to Control Bacterial Grain Rot of Rice

  • Lee, Yong Hwan;Ko, Sug-Ju;Cha, Kwang-Hong;Park, Eun Woo
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.350-362
    • /
    • 2015
  • A disease forecast model for bacterial grain rot (BGR) of rice, which is caused by Burkholderia glumae, was developed in this study. The model, which was named 'BGRcast', determined daily conduciveness of weather conditions to epidemic development of BGR and forecasted risk of BGR development. All data that were used to develop and validate the BGRcast model were collected from field observations on disease incidence at Naju, Korea during 1998-2004 and 2010. In this study, we have proposed the environmental conduciveness as a measure of conduciveness of weather conditions for population growth of B. glumae and panicle infection in the field. The BGRcast calculated daily environmental conduciveness, $C_i$, based on daily minimum temperature and daily average relative humidity. With regard to the developmental stages of rice plants, the epidemic development of BGR was divided into three phases, i.e., lag, inoculum build-up and infection phases. Daily average of $C_i$ was calculated for the inoculum build-up phase ($C_{inf}$) and the infection phase ($C_{inc}$). The $C_{inc}$ and $C_{inf}$ were considered environmental conduciveness for the periods of inoculum build-up in association with rice plants and panicle infection during the heading stage, respectively. The BGRcast model was able to forecast actual occurrence of BGR at the probability of 71.4% and its false alarm ratio was 47.6%. With the thresholds of $C_{inc}=0.3$ and $C_{inf}=0.5$, the model was able to provide advisories that could be used to make decisions on whether to spray bactericide at the preand post-heading stage.

Data Distributions on Performance of Neural Networks for Two Year Peak Stream Discharges

  • Muttiah, Ranjan S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.1073-1080
    • /
    • 1996
  • The impact of the input and output probability distributions on the performance of neural networks to forecast two year peak stream flow (cubic meters per second) is examined for two major river basins of the US. The neural network input consisted of drainage area(square kilometers ) and elevation (meters). When data are normally distributed , the neural networks predict much better than when the data are non-normal and have larger tails in their distributions.

  • PDF

A Performance Evaluation of Multimedia-on-demand Server Using Simulation Method (시뮬레이션 기법을 이용한 주문형 멀티미디어 서버의 성능 평가)

  • 박기진
    • Journal of the Korea Society for Simulation
    • /
    • v.7 no.2
    • /
    • pp.33-43
    • /
    • 1998
  • To evaluate the server performance and forecast capacity requirements, we carry out simulation of Multimedia-on-demand(MOD) server. In multimedia service environment, especially for on-demand service, one of the key problems is capacity planning, which requires ensuring that adequate computer resources will be available to meet the future workload demands in a cost-effective manner. In this paper, we design and implement a simulation model for MOD server with failures of components (e.g., processors, disks and networks). By acquisition of utilization and queue length parameters, we can estimate desirable capacity of server components with various arrival rates of customers and failure rates of components. For a given failure probability, we also compute packet delay probability and reliability of the server. It is possible to derive some important design information of the MOD server by using the above parameters.

  • PDF

Prediction of Dynamic Line Rating Based on Thermal Risk Probability by Time Series Weather Models (시계열 기상모델을 이용한 열적 위험확률 기반 동적 송전용량의 예측)

  • Kim, Dong-Min;Bae, In-Su;Cho, Jong-Man;Chang, Kyung;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.7
    • /
    • pp.273-280
    • /
    • 2006
  • This paper suggests the method that forecasts Dynamic Line Rating (DLR). Thermal Overload Risk Probability (TORP) of the next time is forecasted based on the present weather conditions and DLR value by Monte Carlo Simulation (MCS). To model weather elements of transmission line for MCS process, this paper will propose the use of statistical weather models that time series is applied. Also, through the case study, it is confirmed that the forecasted TORP can be utilized as a criterion that decides DLR of next time. In short, proposed method may be used usefully to keep security and reliability of transmission line by forecasting transmission capacity of the next time.

Identification of Prevailing Risk Attitudes in Various Risk Situations (다양한 위험상황에서의 지배적 위험태도의 파악)

  • Kang, Tae-Geon;Cho, Sung-Ku
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.4
    • /
    • pp.437-447
    • /
    • 1999
  • Previous researches on risk attitudes or on the typical utility functions have mostly focused on how the risk attitude of decision maker varies when changes are made in one or two lottery reference points such as consequence domain and magnitude of probability under assumed risk situations represented by simple lotteries. It is, however, very difficult to forecast dominant risk attitudes under risk situations which exhibit a complex combination of many reference points. In this study, twelve risk situations which a decision maker may confront in real decision-making situations were formulated by combining in various ways three reference points, that is, magnitude of probability, consequence domain, and magnitude of gain or loss. Then through a questionnaire dominant risk attitudes under every assumed risk situation were investigated, and the general shape of utility function implied by the experimental results were derived. Results of the present study show that none of the three reference points have dominant effect over the others due to complicated interaction between them, and given the twelve risk situations the observed risk attitude widely varies from strong risk taking to strong risk aversion.

  • PDF

Prospect for the Outbreak of War between U.S and China by Comparing of the U.S-Japan Relationship in the World WarII Era and the Modern U.S-China Relationship (태평양 전쟁 전 미일관계와 현재의 미중관계 비교를 통한 미중간 전쟁 발발 가능성에 관한 연구)

  • Kim, Tae-sung
    • Strategy21
    • /
    • s.40
    • /
    • pp.37-81
    • /
    • 2016
  • This paper aims to use crossover analysis to uncover similarities and differences between the U.S-Japan relationship in the World War II era and the modern U.S-China relationship, and to forecast the possibility of the outbreak of war between U.S and China by applying the steps to war theory. The steps to war theory argues that the probability of the outbreak of war between two states within five years would approach 90 percent, if they have ongoing territorial dispute, alliance, rivalry, and arms race. The comparison exposes some similarities with the territorial dispute, alliance, rivalry, but reveals dissimilarities with arms race. U.S-Japan relationship in the World War II era had the arms race, which does not exist the modern U.S-China Relationship. The result of comparison is that the probability for the Outbreak of War between U.S and China correspond to third stage(Risk Level). it means that the probability for the Outbreak of War between U.S and China is 55%. But, There are four elements(① Perception of Leader ② Mutual dependence of economy ③ Possession of nuclear weapon ④ Ravages of war) that reduce the probability for the Outbreak of War. Considering the four elements, the probability for the Outbreak of War between U.S and China is a slim chance. But the probability for the Outbreak of War between U.S and China is excluded because of territorial dispute, alliance, rivalry. So, This paper suggests three points.(① Developing military options ② Reducing the misconception of intend, ③ Promoting navy exchanges) to prevent of Outbreak of War.

Application of multiple linear regression and artificial neural network models to forecast long-term precipitation in the Geum River basin (다중회귀모형과 인공신경망모형을 이용한 금강권역 강수량 장기예측)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.723-736
    • /
    • 2022
  • In this study, monthly precipitation forecasting models that can predict up to 12 months in advance were constructed for the Geum River basin, and two statistical techniques, multiple linear regression (MLR) and artificial neural network (ANN), were applied to the model construction. As predictor candidates, a total of 47 climate indices were used, including 39 global climate patterns provided by the National Oceanic and Atmospheric Administration (NOAA) and 8 meteorological factors for the basin. Forecast models were constructed by using climate indices with high correlation by analyzing the teleconnection between the monthly precipitation and each climate index for the past 40 years based on the forecast month. In the goodness-of-fit test results for the average value of forecasts of each month for 1991 to 2021, the MLR models showed -3.3 to -0.1% for the percent bias (PBIAS), 0.45 to 0.50 for the Nash-Sutcliffe efficiency (NSE), and 0.69 to 0.70 for the Pearson correlation coefficient (r), whereas, the ANN models showed PBIAS -5.0~+0.5%, NSE 0.35~0.47, and r 0.64~0.70. The mean values predicted by the MLR models were found to be closer to the observation than the ANN models. The probability of including observations within the forecast range for each month was 57.5 to 83.6% (average 72.9%) for the MLR models, and 71.5 to 88.7% (average 81.1%) for the ANN models, indicating that the ANN models showed better results. The tercile probability by month was 25.9 to 41.9% (average 34.6%) for the MLR models, and 30.3 to 39.1% (average 34.7%) for the ANN models. Both models showed long-term predictability of monthly precipitation with an average of 33.3% or more in tercile probability. In conclusion, the difference in predictability between the two models was found to be relatively small. However, when judging from the hit rate for the prediction range or the tercile probability, the monthly deviation for predictability was found to be relatively small for the ANN models.

A novel WOA-based structural damage identification using weighted modal data and flexibility assurance criterion

  • Chen, Zexiang;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.445-454
    • /
    • 2020
  • Structural damage identification (SDI) is a crucial step in structural health monitoring. However, some of the existing SDI methods cannot provide enough identification accuracy and efficiency in practice. A novel whale optimization algorithm (WOA) based method is proposed for SDI by weighting modal data and flexibility assurance criterion in this study. At first, the SDI problem is mathematically converted into a constrained optimization problem. Unlike traditional objective function defined using frequencies and mode shapes, a new objective function on the SDI problem is formulated by weighting both modal data and flexibility assurance criterion. Then, the WOA method, due to its good performance of fast convergence and global searching ability, is adopted to provide an accurate solution to the SDI problem, different predator mechanisms are formulated and their probability thresholds are selected. Finally, the performance of the proposed method is assessed by numerical simulations on a simply-supported beam and a 31-bar truss structures. For the given multiple structural damage conditions under environmental noises, the WOA-based SDI method can effectively locate structural damages and accurately estimate severities of damages. Compared with other optimization methods, such as particle swarm optimization and dragonfly algorithm, the proposed WOA-based method outperforms in accuracy and efficiency, which can provide a more effective and potential tool for the SDI problem.