• Title/Summary/Keyword: probability distributions

Search Result 744, Processing Time 0.023 seconds

Noninformative priors for the ratio of parameters of two Maxwell distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.3
    • /
    • pp.643-650
    • /
    • 2013
  • We develop noninformative priors for a ratio of parameters of two Maxwell distributions which is used to check the equality of two Maxwell distributions. Specially, we focus on developing probability matching priors and Je reys' prior for objectiv Bayesian inferences. The probability matching priors, under which the probability of the Bayesian credible interval matches the frequentist probability asymptotically, are developed. The posterior propriety under the developed priors will be shown. Some simulations are performed for identifying the usefulness of proposed priors in objective Bayesian inference.

A M-TYPE RISK MODEL WITH MARKOV-MODULATED PREMIUM RATE

  • Yu, Wen-Guang
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1033-1047
    • /
    • 2009
  • In this paper, we consider a m-type risk model with Markov-modulated premium rate. A integral equation for the conditional ruin probability is obtained. A recursive inequality for the ruin probability with the stationary initial distribution and the upper bound for the ruin probability with no initial reserve are given. A system of Laplace transforms of non-ruin probabilities, given the initial environment state, is established from a system of integro-differential equations. In the two-state model, explicit formulas for non-ruin probabilities are obtained when the initial reserve is zero or when both claim size distributions belong to the $K_n$-family, n $\in$ $N^+$ One example is given with claim sizes that have exponential distributions.

  • PDF

UNIFORM DISTRIBUTIONS ON CURVES AND QUANTIZATION

  • Joseph Rosenblatt;Mrinal Kanti Roychowdhury
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.431-450
    • /
    • 2023
  • The basic goal of quantization for probability distribution is to reduce the number of values, which is typically uncountable, describing a probability distribution to some finite set and thus to make an approximation of a continuous probability distribution by a discrete distribution. It has broad application in signal processing and data compression. In this paper, first we define the uniform distributions on different curves such as a line segment, a circle, and the boundary of an equilateral triangle. Then, we give the exact formulas to determine the optimal sets of n-means and the nth quantization errors for different values of n with respect to the uniform distributions defined on the curves. In each case, we further calculate the quantization dimension and show that it is equal to the dimension of the object; and the quantization coefficient exists as a finite positive number. This supports the well-known result of Bucklew and Wise [2], which says that for a Borel probability measure P with non-vanishing absolutely continuous part the quantization coefficient exists as a finite positive number.

Reliability index for non-normal distributions of limit state functions

  • Ghasemi, Seyed Hooman;Nowak, Andrzej S.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.365-372
    • /
    • 2017
  • Reliability analysis is a probabilistic approach to determine a safety level of a system. Reliability is defined as a probability of a system (or a structure, in structural engineering) to functionally perform under given conditions. In the 1960s, Basler defined the reliability index as a measure to elucidate the safety level of the system, which until today is a commonly used parameter. However, the reliability index has been formulated based on the pivotal assumption which assumed that the considered limit state function is normally distributed. Nevertheless, it is not guaranteed that the limit state function of systems follow as normal distributions; therefore, there is a need to define a new reliability index for no-normal distributions. The main contribution of this paper is to define a sophisticated reliability index for limit state functions which their distributions are non-normal. To do so, the new definition of reliability index is introduced for non-normal limit state functions according to the probability functions which are calculated based on the convolution theory. Eventually, as the state of the art, this paper introduces a simplified method to calculate the reliability index for non-normal distributions. The simplified method is developed to generate non-normal limit state in terms of normal distributions using series of Gaussian functions.

ℂ-VALUED FREE PROBABILITY ON A GRAPH VON NEUMANN ALGEBRA

  • Cho, Il-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.601-631
    • /
    • 2010
  • In [6] and [7], we introduced graph von Neumann algebras which are the (groupoid) crossed product algebras of von Neumann algebras and graph groupoids via groupoid actions. We showed that such crossed product algebras have the graph-depending amalgamated reduced free probabilistic properties. In this paper, we will consider a scalar-valued $W^*$-probability on a given graph von Neumann algebra. We show that a diagonal graph $W^*$-probability space (as a scalar-valued $W^*$-probability space) and a graph W¤-probability space (as an amalgamated $W^*$-probability space) are compatible. By this compatibility, we can find the relation between amalgamated free distributions and scalar-valued free distributions on a graph von Neumann algebra. Under this compatibility, we observe the scalar-valued freeness on a graph von Neumann algebra.

Modeling Deformation Behavior of Heterogenous Microstructure of Ti-6AI-4V Alloy using Probability Functions (확률함수를 이용한 비균질 Ti-6Al-4V 합금의 변형거동 모델링)

  • Ko, Eun-Young;Kim, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.292-297
    • /
    • 2003
  • A stochastic approach has been presented for superplastic deformation of Ti-6AJ-4V alloy, and probability function are used to heterogeneous phase distributions. The experimentally observed spatial correlation function are developed, and microstructural evolutions together with superplastic deformation behavior have investigated by means of the probability function. The result have shown that the probability varies approximately linearly with separation with distance, and significant deformation enhanced probability changes during the deformation. The stress-strain behavior with the evolutions of probability function can be correctly predicted by the model. The finite clement implementation using Monte Carlo simulation associated with phase re-distributions shows that better agreement with experimental data of failure strain on the test specimen.

  • PDF

Bayesian Inference for Stress-Strength Systems

  • Chang, In-Hong;Kim, Byung-Hwee
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.27-34
    • /
    • 2005
  • We consider the problem of estimating the system reliability noninformative priors when both stress and strength follow generalized gamma distributions. We first derive Jeffreys' prior, group ordering reference priors, and matching priors. We investigate the propriety of posterior distributions and provide marginal posterior distributions under those noninformative priors. We also examine whether the reference priors satisfy the probability matching criterion.

  • PDF

Simulated Annealing Algorithm Using Cauchy-Gaussian Probability Distributions (Cauchy와 Gaussian 확률 분포를 이용한 Simulated Annealing 알고리즘)

  • Lee, Dong-Ju;Lee, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.130-136
    • /
    • 2010
  • In this study, we propose a new method for generating candidate solutions based on both the Cauchy and the Gaussian probability distributions in order to use the merit of the solutions generated by these distributions. The Cauchy probability distribution has larger probability in the tail region than the Gaussian distribution. Thus, the Cauchy distribution can yield higher probabilities of generating candidate solutions of large-varied variables, which in turn has an advantage of searching wider area of variable space. On the contrary, the Gaussian distribution can yield higher probabilities of generating candidate solutions of small-varied variables, which in turn has an advantage of searching deeply smaller area of variable space. In order to compare and analyze the performance of the proposed method against the conventional method, we carried out experiments using benchmarking problems of real valued functions. From the result of the experiment, we found that the proposed method based on the Cauchy and the Gaussian distributions outperformed the conventional one for most of benchmarking problems, and verified its superiority by the statistical hypothesis test.