• Title/Summary/Keyword: probability density function (PDF) matching

Search Result 4, Processing Time 0.02 seconds

Analysis of Quantization Error in Stereo Vision (스테레오 비젼의 양자화 오차분석)

  • 김동현;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.54-63
    • /
    • 1993
  • Quantization error, generated by the quantization process of an image, is inherent in computer vision. Because, especially in stereo vision, the quantization error in a 2-D image results in position errors in the reconstructed 3-D scene, it is necessary to analyze it mathematically. In this paper, the analysis of the probability density function (pdf) of quantization error for a line-based stereo matching scheme is presented. We show that the theoretical pdf of quantization error in the reconstructed 3-D position information has more general form than the conventional analysis for pixel-based stereo matching schemes. Computer simulation is observed to surpport the theoretical distribution.

  • PDF

Adaptive Equalization using PDP Matching Algorithms for Underwater Communication Channels with Impulsive Noise (충격성 잡음이 있는 수중 통신 채널의 적응 등화를 위한 확률밀도함수 정합 알고리듬)

  • Kim, Nam-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1210-1215
    • /
    • 2011
  • In this paper, a supervised adaptive equalization algorithm based on probability density function (PDF) matching method is introduced and its decision-feedback version is proposed for underwater communication channels with strong impulsive noise and severe multipath characteristics. The conventional least mean square (LMS) algorithm based on mean squared error (MSE) criterion has shown to be incapable of coping with impulsive noise and multipath effects commonly shown in underwater communications. The linear PDF matching algorithm, which shows immunity to impulsive noise, however, has revealed to yield unsatisfying performance under severe multipath environments with impulsive noise. On the other hand, the proposed nonlinear PDF matching algorithm with decision feedback proves in the simulation to possess superior robustness against impulsive noise and multipath characteristics of underwater communication channels.

Blind Signal Processing for Impulsive Noise Channels

  • Kim, Nam-Yong;Byun, Hyung-Gi;You, Young-Hwan;Kwon, Ki-Hyeon
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • In this paper, a new blind signal processing scheme for equalization in fading and impulsive-noise channel environments is introduced based on probability density functionmatching method and a set of Dirac-delta functions. Gaussian kernel of the proposed blind algorithm has the effect of cutting out the outliers on the difference between the desired level values and impulse-infected outputs. And also the proposed algorithm has relatively less sensitivity to channel eigenvalue ratio and has reduced computational complexity compared to the recently introduced correntropy algorithm. According to these characteristics, simulation results show that the proposed blind algorithm produces superior performance in multi-path communication channels corrupted with impulsive noise.

A novel Metropolis-within-Gibbs sampler for Bayesian model updating using modal data based on dynamic reduction

  • Ayan Das;Raj Purohit Kiran;Sahil Bansal
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • The paper presents a Bayesian Finite element (FE) model updating methodology by utilizing modal data. The dynamic condensation technique is adopted in this work to reduce the full system model to a smaller model version such that the degrees of freedom (DOFs) in the reduced model correspond to the observed DOFs, which facilitates the model updating procedure without any mode-matching. The present work considers both the MPV and the covariance matrix of the modal parameters as the modal data. Besides, the modal data identified from multiple setups is considered for the model updating procedure, keeping in view of the realistic scenario of inability of limited number of sensors to measure the response of all the interested DOFs of a large structure. A relationship is established between the modal data and structural parameters based on the eigensystem equation through the introduction of additional uncertain parameters in the form of modal frequencies and partial mode shapes. A novel sampling strategy known as the Metropolis-within-Gibbs (MWG) sampler is proposed to sample from the posterior Probability Density Function (PDF). The effectiveness of the proposed approach is demonstrated by considering both simulated and experimental examples.