• 제목/요약/키워드: probability density function (PDF) matching

검색결과 4건 처리시간 0.022초

스테레오 비젼의 양자화 오차분석 (Analysis of Quantization Error in Stereo Vision)

  • 김동현;박래홍
    • 전자공학회논문지B
    • /
    • 제30B권9호
    • /
    • pp.54-63
    • /
    • 1993
  • Quantization error, generated by the quantization process of an image, is inherent in computer vision. Because, especially in stereo vision, the quantization error in a 2-D image results in position errors in the reconstructed 3-D scene, it is necessary to analyze it mathematically. In this paper, the analysis of the probability density function (pdf) of quantization error for a line-based stereo matching scheme is presented. We show that the theoretical pdf of quantization error in the reconstructed 3-D position information has more general form than the conventional analysis for pixel-based stereo matching schemes. Computer simulation is observed to surpport the theoretical distribution.

  • PDF

충격성 잡음이 있는 수중 통신 채널의 적응 등화를 위한 확률밀도함수 정합 알고리듬 (Adaptive Equalization using PDP Matching Algorithms for Underwater Communication Channels with Impulsive Noise)

  • 김남용
    • 한국통신학회논문지
    • /
    • 제36권10B호
    • /
    • pp.1210-1215
    • /
    • 2011
  • 이 논문에서는 다중경로 특성과 충격성 잡음이 있는 수중 통신 채널에 대해 확률밀도함수 정합 방법에 근거한 적응등화 알고리듬을 소개하고 결정 궤환을 적용한 확률밀도함수 정함 알고리듬을 제안하였다. 기존의 제곱평균오차 기반의 최소평균제곱 (LMS) 알고리듬은 수중통신 채널의 충격성 잡음과 다중경로 채널을 보상하지 못하는 현상을 보였다. 충격성 잡음에 효과적인 면역성을 보인 선형 확률밀도함수 정합 알고리듬도 열악한 다중경로 환경에서는 만족스럽지 못한 성능을 나타났다. 한편, 제안한 결정 궤환 구조의 비선형 확률밀도함수 정합 알고리듬은 수중 통신 채널의 다중경로 특성과 충격성 잡음에 대해 탁월한 강인성을 가짐을 모의실험을 통해 입증되었다.

Blind Signal Processing for Impulsive Noise Channels

  • Kim, Nam-Yong;Byun, Hyung-Gi;You, Young-Hwan;Kwon, Ki-Hyeon
    • Journal of Communications and Networks
    • /
    • 제14권1호
    • /
    • pp.27-33
    • /
    • 2012
  • In this paper, a new blind signal processing scheme for equalization in fading and impulsive-noise channel environments is introduced based on probability density functionmatching method and a set of Dirac-delta functions. Gaussian kernel of the proposed blind algorithm has the effect of cutting out the outliers on the difference between the desired level values and impulse-infected outputs. And also the proposed algorithm has relatively less sensitivity to channel eigenvalue ratio and has reduced computational complexity compared to the recently introduced correntropy algorithm. According to these characteristics, simulation results show that the proposed blind algorithm produces superior performance in multi-path communication channels corrupted with impulsive noise.

A novel Metropolis-within-Gibbs sampler for Bayesian model updating using modal data based on dynamic reduction

  • Ayan Das;Raj Purohit Kiran;Sahil Bansal
    • Structural Engineering and Mechanics
    • /
    • 제87권1호
    • /
    • pp.1-18
    • /
    • 2023
  • The paper presents a Bayesian Finite element (FE) model updating methodology by utilizing modal data. The dynamic condensation technique is adopted in this work to reduce the full system model to a smaller model version such that the degrees of freedom (DOFs) in the reduced model correspond to the observed DOFs, which facilitates the model updating procedure without any mode-matching. The present work considers both the MPV and the covariance matrix of the modal parameters as the modal data. Besides, the modal data identified from multiple setups is considered for the model updating procedure, keeping in view of the realistic scenario of inability of limited number of sensors to measure the response of all the interested DOFs of a large structure. A relationship is established between the modal data and structural parameters based on the eigensystem equation through the introduction of additional uncertain parameters in the form of modal frequencies and partial mode shapes. A novel sampling strategy known as the Metropolis-within-Gibbs (MWG) sampler is proposed to sample from the posterior Probability Density Function (PDF). The effectiveness of the proposed approach is demonstrated by considering both simulated and experimental examples.