• 제목/요약/키워드: probability density evolution

검색결과 33건 처리시간 0.023초

A Lagrangian Based Scalar PDF Method for Turbulent Combustion Models

  • Moon, Hee-Jang;Borghi, Roland
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1470-1478
    • /
    • 2004
  • In this paper, a new 'presumed' Probability Density Function (PDF) approach coupled with a Lagrangian tracking method is proposed for turbulent combustion modeling. The test and the investigation of the model are conducted by comparing the model results with DNS data for a premixed flame subjected in a decaying turbulent field. The newly constructed PDF, which incorporates the instantaneous chemical reaction term, demonstrates consistent improvement over conventional assumed PDF models. It has been found that the time evolution of the mean scalar, the variance and the mean reaction rate are strongly influenced by a parameter deduced by a Lagrangian equation which takes into account explicitly the local reaction rate. Tests have been performed for a moderate Damkohler number, and it is expected the model may cover a broader range of Damkohler number. The comparison with the DNS data demonstrates that the proposed model may be promising and affordable for implementation in a moment-equation solver.

수송 확률밀도함수모델을 이용한 비예혼합 난류화염장 해석 (Transported PDF Model for Turbulent Nonpremixed Flames)

  • 이정원;석준호;김용모
    • 한국연소학회지
    • /
    • 제14권2호
    • /
    • pp.32-41
    • /
    • 2009
  • The transported probability density function model combined with the consistent finite volume (FV) method has been applied to simulate the turbulent bluff-body reacting flows. To realistically account for the non-isotropic turbulence effects on the turbulent bluff-body reacting flows, the present PDF transport approach is based on the joint velocity- turbulent frequency-composition PDF formulation. The evolution of the fluctuating velocity of a particle is modeled by a simplified Langevin equation and the particle turbulence frequency is represented by the modified Jayesh - Pope model. Effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate this hybrid FV/PDF transport model, the numerical results are compared with experimental data for the turbulent bluff-body reacting flows.

  • PDF

FGM기반 Multi-Environment PDF 모델을 이용한 메탄/공기 부상화염장의 Large Eddy Simulation (Large Eddy Simulation of a Lifted Methane/Air Flame using FGM-based Multi-Environment PDF Approach)

  • 김남수;김재현;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.265-266
    • /
    • 2015
  • The multi-environment PDF model coupled with flamelet generated manifolds(FGM) has been developed for a large eddy simulation of turbulent partially premixed lifted flame. This approach has a capability to realistically account for the transport and evolution of probability density function for mixture fraction and progress variable with the manageable computational burden. Using the tabulated chemistry, it is possible to track radical distributions which is important to predict autoignition process with the vitiated coflow environment. Numerical results indicate that the present yields the good agreement with experimental data in terms of mixture fraction, temperature, and species mass fractions.

  • PDF

BIFURCATIONS OF STOCHASTIC IZHIKEVICH-FITZHUGH MODEL

  • Nia, Mehdi Fatehi;Mirzavand, Elaheh
    • 호남수학학술지
    • /
    • 제44권3호
    • /
    • pp.402-418
    • /
    • 2022
  • Noise is a fundamental factor to increased validity and regularity of spike propagation and neuronal firing in the nervous system. In this paper, we examine the stochastic version of the Izhikevich-FitzHugh neuron dynamical model. This approach is based on techniques presented by Luo and Guo, which provide a general framework for the bifurcation and stability analysis of two dimensional stochastic dynamical system as an Itô averaging diffusion system. By using largest lyapunov exponent, local and global stability of the stochastic system at the equilibrium point are investigated. We focus on the two kinds of stochastic bifurcations: the P-bifurcation and the D-bifurcations. By use of polar coordinate, Taylor expansion and stochastic averaging method, it is shown that there exists choices of diffusion and drift parameters such that these bifurcations occurs. Finally, numerical simulations in various viewpoints, including phase portrait, evolution in time and probability density, are presented to show the effects of the diffusion and drift coefficients that illustrate our theoretical results.

Evolution of cometary dust particles to the inner solar system: Initial conditions, mutual collision and final sinks

  • Yang, Hongu;Ishiguro, Masateru
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.48.3-49
    • /
    • 2017
  • Interplanetary space of the solar system contains a large number of dust particles, referred to as Interplanetary Dust Particles (IDPs) cloud complex. They are observable through meteors and zodiacal lights. The relative contribution of possible sources to the IDPs cloud complex was an controversial topic, however, recent research (Yang & Ishiguro, 2015 and references therein) suggested a dominance of cometary origin. In this study, we numerically investigated the orbital evolution of cometary dust particles, with special concerns on different evolutionary tracks and its consequences according to initial orbits, size and particle shape. The effect of dust particle density and initial size-frequency distribution (SFD) were not decisive in total cloud complex mass and mass supply rate, when these physical quantities are confined by observed zodiacal light brightness and dust particle SFD at 1 au. We noticed that, if we assume the existence of fluffy aggregates discovered in the Earth's stratosphere and the coma of 67P/Churyumov-Gerasimenko, the required mass supply rate decreases significantly. We also found out that close encounters with planets (mostly Jupiter) are the dominating factor of the orbital evolution of dust particles, as the result, the lifetime of cometary dust particles are shorter than Poynting-Robertson lifetime (around 250 thousand years). As another consequence of severe close encounters, only a small fraction of cometary dust particles can be transferred into the orbit < 1 au. This effect is significant for large size particles of ${\beta}$ < 0.01. The exceptional cases are dust particles ejected from 2P/Encke and active asteroids. Because they rarely encounter with Jupiter, most dust particles ejected from those objects are governed by Poynting-Robertson effect and well transferred into the orbits of small semimajor axis. In consideration of the above effects, we directly estimated probability of mutual collisions between dust particles and concluded that mutual collisions in the IDPs cloud complex is mostly ignorable, except for the case of large sized particles from active asteroids.

  • PDF

국내 벤처기업 진화과정에 관한 실증분석 - 코스닥상장 기술벤처기업 분석을 중심으로 - (An Empirical Study on the Size Distribution of Venture Firms in the center of KOSDAQ Listed Companies)

  • 조상섭;양영석
    • 벤처창업연구
    • /
    • 제6권1호
    • /
    • pp.23-37
    • /
    • 2011
  • 본 연구는 우리나라 벤처기업규모의 진화과정이 기존 기업규모에 무 작위적인 진화과정인지 (Gibrat's Law) 또는 자기조직화의 과정을 따를 지(Pareto Law)에 대한 실증분석을 실시하는 데 목적에서 수행되었다. 이 연구목적을 위하여 두 가지 진화과정에 대한 이론적 가능성을 설명하고, 2005년도부터 2008년도까지 92개 코스닥상장 기술벤처기업대상으로 실증적 분석을 실시하였다. 실증분석결과를 간단하게 요약하면 다음과 같다. 첫째, 우리나라 벤처기업규모의 집중도를 나타내는 지니계수변화는 종업원 수의 관점에서 집중도는 2005년도에 비하여 2008년도에 상대적으로 감소하였으나, 매출액 규모에서는 기업규모집중도가 증가하고 있음을 보였다. 둘째, 우리나라 벤처기업규모의 진화과정은 자기조작화의 메커니즘이 작동되는 멱 함수 법칙을 따르는 것으로 나타났다. 추정된 파레토 계수는 1보다 작게 나타났으며, 추정된 계수는 통계적으로 유의한 값을 보였다. 셋째, 우리나라 벤처기업규모의 초기 설립에서부터 장기적 기업성장을 통하여 최상위 기업규모그룹에 속할 수 있는 확률은 6.9%로 전망되었다. 이러한 실증분석결과는 초기에 나타난 벤처기업규모가 장기적 벤처기업진화에 매우 중요한 역할을 수행함을 제시한다.

  • PDF

원형 안테나 배열의 위상 차이 분포 특성을 활용한 코드벡터 결정 방식 및 성능 평가 (Determination and Performance Evaluation of Codevectors Utilizing Phase Difference Distribution Characteristics of Circular Antenna Arrays)

  • 김희원;서준엽;성원진
    • 전자공학회논문지
    • /
    • 제53권10호
    • /
    • pp.3-9
    • /
    • 2016
  • 현재 사용 중인 이동 통신 시스템에서는 주파수 효율을 높이기 위한 주요한 방법으로 다중 입출력 송수신 (multiple-input multiple-output; MIMO) 전송 기술을 사용하고 있다. MIMO 전송 시 채널의 추정을 통한 정확한 빔포밍의 수행은 수신 신호의 신호 대 간섭 및 잡음 비 (signal-to-interference-plus-noise ratio; SINR) 증가와 시스템의 성능 향상에 기여하며, 따라서 빔포밍 벡터와 이를 정의하는 코드북 설계에 관한 논의는 매우 중요하다. 본 논문에서는 균일 원형 배열 (uniform circular array; UCA) 구조 환경에 적합한 코드북을 제안하기 위해 인접 안테나 간 채널의 위상 차이를 통계적으로 분석한 후, 확률 밀도 함수의 분포에서 나타난 위상의 이동 정도를 보상하기 위해 새로운 매개 변수를 추가하는 방법을 사용한다. 제안 코드북은 공간채널모델 환경에서 성능 평가를 진행하여 기존의 LTE (long term evolution) Release 8과 Release 10에서 제시한 표준 코드북 대비 큰 폭의 성능 이득을 보임을 확인한다.

Uncertainty analysis of containment dose rate for core damage assessment in nuclear power plants

  • Wu, Guohua;Tong, Jiejuan;Gao, Yan;Zhang, Liguo;Zhao, Yunfei
    • Nuclear Engineering and Technology
    • /
    • 제50권5호
    • /
    • pp.673-682
    • /
    • 2018
  • One of the most widely used methods to estimate core damage during a nuclear power plant accident is containment radiation measurement. The evolution of severe accidents is extremely complex, leading to uncertainty in the containment dose rate (CDR). Therefore, it is difficult to accurately determine core damage. This study proposes to conduct uncertainty analysis of CDR for core damage assessment. First, based on source term estimation, the Monte Carlo (MC) and point-kernel integration methods were used to estimate the probability density function of the CDR under different extents of core damage in accident scenarios with late containment failure. Second, the results were verified by comparing the results of both methods. The point-kernel integration method results were more dispersed than the MC results, and the MC method was used for both quantitative and qualitative analyses. Quantitative analysis indicated a linear relationship, rather than the expected proportional relationship, between the CDR and core damage fraction. The CDR distribution obeyed a logarithmic normal distribution in accidents with a small break in containment, but not in accidents with a large break in containment. A possible application of our analysis is a real-time core damage estimation program based on the CDR.

Instability of (Heterogeneous) Euler beam: Deterministic vs. stochastic reduced model approach

  • Ibrahimbegovic, Adnan;Mejia-Nava, Rosa Adela;Hajdo, Emina;Limnios, Nikolaos
    • Coupled systems mechanics
    • /
    • 제11권2호
    • /
    • pp.167-198
    • /
    • 2022
  • In this paper we deal with classical instability problems of heterogeneous Euler beam under conservative loading. It is chosen as the model problem to systematically present several possible solution methods from simplest deterministic to more complex stochastic approach, both of which that can handle more complex engineering problems. We first present classical analytic solution along with rigorous definition of the classical Euler buckling problem starting from homogeneous beam with either simplified linearized theory or the most general geometrically exact beam theory. We then present the numerical solution to this problem by using reduced model constructed by discrete approximation based upon the weak form of the instability problem featuring von Karman (virtual) strain combined with the finite element method. We explain how such numerical approach can easily be adapted to solving instability problems much more complex than classical Euler's beam and in particular for heterogeneous beam, where analytic solution is not readily available. We finally present the stochastic approach making use of the Duffing oscillator, as the corresponding reduced model for heterogeneous Euler's beam within the dynamics framework. We show that such an approach allows computing probability density function quantifying all possible solutions to this instability problem. We conclude that increased computational cost of the stochastic framework is more than compensated by its ability to take into account beam material heterogeneities described in terms of fast oscillating stochastic process, which is typical of time evolution of internal variables describing plasticity and damage.

2단 분류층 가스화기에서 합성가스 생성을 위한 석탄 슬러리 가스화에 대한 수치 해석적 연구 (Numerical simulation of gasification of coal-water slurry for production of synthesis gas in a two stage entrained gasifier)

  • 서동균;이선기;송순호;황정호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.417-423
    • /
    • 2007
  • Oxy-gasification or oxygen-blown gasification, enables a clean and efficient use of coal and opens a promising way to CO2 capture. The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. The purposes of this study are to develop an evaluation technique for design and performance optimization of coal gasifiers using a numerical simulation technique, and to confirm the validity of the model. By dividing the complicated coal gasification process into several simplified stages such as slurry evaporation, coal devolatilization, mixture fraction model and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The influence of turbulence on the gas properties was taken into account by the PDF (Probability Density Function) model. A numerical simulation with the coal gasification model is performed on the Conoco-Philips type gasifier for IGCC plant. Gas temperature distribution and product gas composition are also presented. Numerical computations were performed to assess the effect of variation in oxygen to coal ratio and steam to coal ratio on reactive flow field. The concentration of major products, CO and H2 were calculated with varying oxygen to coal ratio (0.2-1.5) and steam to coal ratio(0.3-0.7). To verify the validity of predictions, predicted values of CO and H2 concentrations at the exit of the gasifier were compared with previous work of the same geometry and operating points. Predictions showed that the CO and H2 concentration increased gradually to its maximum value with increasing oxygen-coal and hydrogen-coal ratio and decreased. When the oxygen-coal ratio was between 0.8 and 1.2, and the steam-coal ratio was between 0.4 and 0.5, high values of CO and H2 were obtained. This study also deals with the comparison of CFD (Computational Flow Dynamics) and STATNJAN results which consider the objective gasifier as chemical equilibrium to know the effect of flow on objective gasifier compared to equilibrium. This study makes objective gasifier divided into a few ranges to study the evolution of the gasification locally. By this method, we can find that there are characteristics in the each scope divided.

  • PDF