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BIFURCATIONS OF STOCHASTIC IZHIKEVICH-FITZHUGH

MODEL

Mehdi Fatehi Nia∗ and Elaheh Mirzavand

Abstract. Noise is a fundamental factor to increased validity and regu-

larity of spike propagation and neuronal firing in the nervous system. In
this paper, we examine the stochastic version of the Izhikevich-FitzHugh

neuron dynamical model. This approach is based on techniques presented

by Luo and Guo, which provide a general framework for the bifurcation
and stability analysis of two dimensional stochastic dynamical system as

an Itô averaging diffusion system. By using largest lyapunov exponent,

local and global stability of the stochastic system at the equilibrium point
are investigated. We focus on the two kinds of stochastic bifurcations: the

P-bifurcation and the D-bifurcations. By use of polar coordinate, Taylor

expansion and stochastic averaging method, it is shown that there ex-
ists choices of diffusion and drift parameters such that these bifurcations

occurs. Finally, numerical simulations in various viewpoints, including

phase portrait, evolution in time and probability density, are presented
to show the effects of the diffusion and drift coefficients that illustrate our

theoretical results.

1. Introduction

Usually it is necessary to study a natural phenomena as dynamic systems
subjected to stochastic excitations due to the effects of many unknown factors.
An example of such systems is neuroscience dynamical models. The field of dy-
namical systems in neuroscience started with the 1952 paper of Hodgkin and
Huxley in which they introduce a nonlinear partial differential equation that
describe the genesis of the action potential in the giant axon of the squid [12].
Then a large number of dynamical models have been produced to explain the
mechanism of neurons in dynamical viewpoint, for example [5, 10, 13, 19, 20].
Since dynamical behavior of a neural circuit depends on many factors, vari-
ous researchers tries to describe the action potential of nerves as a stochas-
tic process[6, 15]. In [15] the authors consider experimental measurements of
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synaptic noise and its stochastic processes modeling. Then, review the out-
comes of synaptic noise on neuronal integrative properties investigated exper-
imentally using the dynamic-clamp. Yamakou et. al. introduce a stochastic
FitzHugh-Nagumo neuron model and prove that Under specific types of noises,
there exists a global random attractor for this stochastic system [21]. The
stability and bifurcations of such stochastic systems have been of increasing
interest to researchers during recent years[4, 7, 9, 11, 16, 17, 18]. Hence, study-
ing the stability and bifurcation in a stochastic dynamical model of neurons
action is an interesting topic for many researchers and practitioners in dynam-
ical systems viewpoint.
Specially, Luo and Guo [17] investigated the stability and bifurcation of a
two-dimensional stochastic differential equations with multiplicative excita-
tions. They provided some conditions on drift and diffusion coefficient of a
two-dimensional nonlinear stochastic system to obtain P-bifurcation and D-
bifurcation.
In this paper, we consider a stochastic Izhikevich-FitzHugh dynamical model
with multiplicative excitations and proceed to study its stability and bifurca-
tion. Firstly, we present an overview of dynamical behaviour in two-dimensional
stochastic systems with multiplicative excitations, that provided by Luo and
Guo in [17]. Specially, this section focused on sufficient conditions on drift and
diffusion coefficients for stability and P-bifurcation in two dimensional stochas-
tic dynamical systems. Then, we consider deterministic Izhikevich-FitzHugh
model that we are going to study its stochastic dynamic. The main part of this
paper begins with Section 3 that is devoted to stochastic Izhikevich-FitzHugh
model with multiplicative excitations. In Section 4 largest Lyapunov exponent
and D-bifurcation for our stochastic model are considered. In Section 5 we
consider several conditions on diffusion and drift coefficients that the model
undergoes P-bifurcation. Finally using Euler-Maruyama method, we demon-
strate some numerical simulation to validate the result.

2. Preliminaries

In this section, we present some preliminaries concepts and definitions that
will be used in the sequel. Consider the two-dimensional stochastic differential
system with multiplicative excitations

(1)

{
dx = f1(x, y)dt+ g1(x, y)dW1(t),
dy = f2(x, y)dt+ g2(x, y)dW2(t),

where fi ∈ C3(R×R,R), gi ∈ C1(R×R,R) (i = 1, 2) and dWi(t) (i = 1, 2) are
mutually independent standard real-valued Wiener processes on the complete
probability space (Ω, F, P ). Most interesting is the problem on conditions for
the asymptotic stability with probability of solutions of system 1 , i.e., on
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conditions for the relation P{limt→∞ Xx(t) = 0} = 1 to be satisfied for all x,
where, X(t) is a solution of 1 satisfying the initial condition Xx(0) = x.

Definition 2.1. a− The equilibrium position of equation 1 is said to be
stochastically stable or stable in probability if for every pair of ϵ ∈ (0, 1) and
r > 0, there exists a δ = δ(ϵ, r, t0) > 0 such that

P{|x(t; t0, x0)| < r for all t ≥ t0} ≥ 1− ϵ,

whenever ∥x0∥ < δ0. Otherwise, it is said to be stochastically unstable.
b− The equilibrium position is said to be stochastically asymptotically stable
if it is stochastically stable and, moreover, for every ϵ ∈ (0, 1), there exists a
δ0 = δ0(ϵ, t0) > 0 such that

P{ lim
t→∞

x(t; t0, x0) = 0} ≥ 1− ϵ,

whenever ∥x0∥ < δ0. The equilibrium position is said to be global stochastically
asymptotically stable if it is stochastically stable and, moreover, for all x0 ∈ Rd

P{ lim
t→∞

x(t; t0, x0) = 0} = 1.

In the sequel, using Taylor expansion, polar coordinate transformation and
stochastic averaging method, a general framework for the stability and bi-
furcation analysis of the stochastic system 1 is provided [17]. Suppose that
fi(0, 0) = 0 and gi(0, 0) = 0 (i = 1, 2).
If in the Taylor expansion of fi and gi at the point O(0, 0) we ignore the terms
higher than third order and rescaling the system as presented in [17], then the
following system obtained:

(2)


dx = ϵ[c110x+ c101y + c120x

2 + c111xy + c102y
2 + c130x

3 + c121x
2y

+c112xy
2 + c103y

3]dt+
√
ϵ[k110x+ k101y]dW1(t),

dy = ϵ[c210x+ c201y + c220x
2 + c211xy + c202y

2 + c230x
3 + c221x

2y
+c212xy

2 + c203y
3]dt+

√
ϵ[k210x+ k201y]dW2(t),

In [17] the authors by combining polar coordinate transformation rewrote sys-
tem 2 to Itô stochastic differential equations

(3)

{
dr = [(ω1 +

1
16ω2)r +

1
8ω3r

3]dt+ (ω4

8 r2)
1
2 dWr(t),

dθ = [ 14ω5 +
1
8ω6r

2]dt+ (ω2

8 )
1
2 dWθ(t),

with the following notations:

(4)



ω1 = 1
2 (c110 + c201),

ω2 = k2110 + b2201 + b2101 + 3b2210,
ω3 = 3c130 + c112 + c221 + c203,
ω4 = 3k2110 + b2101 + b2210 + b2201,
ω5 = −2c101 + 2c210 + k110k101 − k210k201,
ω6 = −c103 + c212 − c121 + 3c230.
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Taking account of the existence of random factors, we assume that ω2 and ω4

are positive numbers, in the sequel. Since the modulus equation is uncoupled
with the phase equation, we only need the averaging modulus equation:

(5) dr = [(ω1 +
1

16
ω2)r +

1

8
ω3r

3]dt+ (
ω4

8
r2)

1
2 dWr(t),

to investigate the stability and bifurcation of system 7. Now, we wish to de-
scribe stability and bifurcation of Equation 5 at the equilibrium point r = 0.
In the following theorems, by using Equation 5, we investigate the stability
conditions of the equilibrium point of System 7.

Theorem 2.2. [17] (i) When ω1 +
1
16ω2 − 1

16ω4 < 0, the trivial solution of
the linear Itô stochastic differential Equation 5 is asymptotically stable with
probability 1, which implies stability of the stochastic system 7 at the equilib-
rium point O.
(ii) When ω1 + 1

16ω2 − 1
16ω4 > 0, the trivial solution of the linear Itô sto-

chastic differential Equation 5 is unstable with probability 1, consequently the
stochastic system 7 is unstable at the equilibrium point O.

Theorem 2.3. [17] When 16ω1+ω2−ω4 < 0 and 2ω3 < ω4, the stochastic
system 7 is globally stable at the equilibrium point O.

According to the above theorems, when parameters change, the qualitative
behaviour of the system may be changed. Thus, one can expect the bifurcation
in the systems. The next two theorems, investigate some conditions that system
5 undergoes stochastic phenomenological bifurcation or P-bifurcation.

Theorem 2.4. [17] If ω3 < 0 and ω4 > 0, system 5 undergoes stochastic
phenomenological bifurcations as the parameter ω4 passes through the values
of 8ω1 +

1
2ω2 and 16ω1+ω2

3 .

Theorem 2.5. [17] If ω3 < 0 and ω4 > 0, the stochastic system 7 undergoes
phenomenological bifurcations as the parameter ω4 passes through the values
of 16ω1+ω2

3 and 16ω1+ω2

4 .

2.1. Deterministic Izhikevich-FitzHugh Model

Here, we provide a brief description of the deterministic Izhikevich-FitzHugh
model[13]. {

u̇ = v(α− u)(u− 1)− u+ I,
v̇ = βu− γv,

(6)

Here u mimics the membrane voltage and recovery variable v mimics activation
of an outward current. Parameter I mimics the injected current, and for the
sake of simplicity we set I = 0 in our analysis below. Parameter α describes
the shape of the cubic parabola u(α − u)(u − 1), and parameters β > 0 and
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Figure 1. Nullclines in System 6 for parameters I = 0, β =
0.01, γ = 0.02, α = 0.1 (left) and α = −0.1 (right). Red curve
is v-nullcline, green line is w−nullcline and blue curve is a
trajectory.

γ ≥ 0 describe the kinetics of the recovery variable v.
The nullclines of this model have the simple form{

v = u(α− u)(u− 1) + I,

v = β
γ u,

(7)

So, this system has one, two or three equilibria. We suppose that I = 0 and
consequently the origin (0, 0) is an equilibrium. Indeed, the nullclines of the
model, depicted in Fig.1, always intersect at (0, 0) in this case. The stability
of the equilibrium (0, 0) depends on the parameters α, β, and γ. For example
if I = 0, β = 0.01, γ = 0.02, then the origin for every α = 0.1 is stable and
corresponding to α = −0.1 is unstable. The Jacobian matrix associated with
6 at the equilibrium (0, 0) is given by

L =

(
−α −1
β −γ

)
.(8)

The characteristic polynomial of matrix 8 is obtain by

(9) F (λ) = λ2 + τλ+∆.

Where τ = tr L = −α− γ and ∆ = det L = αγ + β.
Then the equilibrium (0, 0) is stable when α + γ > 0 and αγ + β > 0. Hence
for every α > 0 the equilibrium (0, 0) is stable. This model may has two
stable equilibria separated by an unstable equilibrium. Depending on the initial
condition, the trajectory may approach the left or the right equilibrium.
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3. Stochastic Izhikevich-FitzHugh model

In neural systems noise can be generated by a variety of reasons and it
may arise from different sources [21]. Thus, mathematical modelling of neural
dynamics, as a stochastic process, is interest of a variety of researchers. In
this direction, we consider the following stochastic case of Izhikevich-FitzHugh
model, presented in Equation 6.{

du = (u(α− u)(u− 1)− v + I)dt+ σ1udW1(t),
dv = (βu− γv)dt+ σ2vdW2(t),

(10)

where, σ1, σ2 measure the noise intensity in the system due to the environment
and W1(t),W2(t) denote the independent standard Wiener processes.
Applying Taylor’s expansion, we have the following equivalent system:{

du = (−u3 + (α+ 1)u2 − αu− v + I)dt+ σ1udW1(t),
dv = (βu− γv)dt+ σ2vdW2(t),

(11)

Let u = u, v = v, t = t and cjis = ϵcjis, kjis =
√
ϵcjis for all j, i, s. Then{

du = ϵ(−u3 + (α+ 1)u2 − αu− v + I)dt+
√
ϵσ1udW1(t),

dv = ϵ(βu− γv)dt+
√
ϵσ2vdW2(t),

(12)

Note that we drop the bars from the scaled variables for simplicity. Now, by
Khasminskii limiting theorem, System 12 can be transformed into the follow-
ing limiting Itô averaging equations via polar coordinate transformation and
stochastic differential equations:{

dr = [(ω1 +
1
16ω2)r +

1
8ω3r

3]dt+ (ω4

8 r2)
1
2 dWr(t),

dθ = [ 14ω5]dt+ (ω2

8 )
1
2 dWθ(t),

(13)

where the parameters ωi arises from Equations 4 and given as follows:

(14)
ω1 = 1

2 (−α− γ), ω2 = σ2
1 + σ2

2 ,
ω3 = −3, ω4 = 3σ2

1 + σ2
2 ,

ω5 = 2 + 2β.

4. Largest Lyapunov exponent and stability

Let λ be the largest Lyapunov exponent of System 6. Oseledec multiplicative
ergodic theorem [2] shows that λ < 0 implies the asymptotically stability of
the trivial solution of linearized equation and λ > 0 implies that our stochastic
system is unstable at the equilibrium (0, 0). In Theorem 3.1 of [17], the authors
prove that

λ = lim
t→+∞

1

t
ln ∥r(t)∥ = ω1 +

1

16
ω2 −

1

16
ω4,

where r(t) is solution of Equation 13. Then we have the following theorem:
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Theorem 4.1. (i) When −γ − α < 1
4σ

2
1 , the trivial solution of the linear

Itô stochastic differential Equation 10 is asymptotically stable with probability
1, thus the stochastic system 10 is stable at the equilibrium point O.
(ii)When −γ−α > 1

4σ
2
1 , the trivial solution of the linear Itô stochastic differen-

tial Equation 5 is unstable with probability 1, which implies that the stochastic
System 10 is unstable at the equilibrium point O.

Remark 4.2. Since ω3 = −3 and ω4 = 3σ2
1 + σ2

2 , Theorem 3.2 of [17]
implies that if −(γ+α) < 1

4σ
2
1 , then the stochastic System 10 is globally stable

at the equilibrium point O.

In Fig. 2 we plot largest Lyapunov exponent where σ1 is variable. It means
that if γ = 0.02, β = 0.01, σ2 = 0.2, α = −0.2 then for every σ1 >

√
0.72, the

largest Lyapunov exponent is negative and consequently the neuronal activity
is stable or periodic. In Fig. 2 we plot largest Lyapunov exponent where α and
σ1 are variable.

Definition 4.3. [9] (D-bifurcation:)Dynamical bifurcation is concerned
with a family of random dynamical systems which is differential and has the
invariant measure ωθ. If there exists a constant θ0 satisfying in any neighbour-
hood of θ0, there exists another constant θ and the corresponding invariant
measure νθ ̸= ωθ satisfying νθ → ωθ as θ → θ0. Then, the constant θ0 is a
point of dynamical bifurcation.

Then, Theorem 4.1 of [17] and Section 3 of [9] imply that for every pa-
rameters γ, α, σ1 that −γ − α = 1

4σ
2
1 the stochastic system 10 undergoes a

D−bifurcation.

5. P-bifurcation

The stochastic P-bifurcation is a type of stochastic bifurcation that occurs
in a stochastic system. This bifurcation describe the mode of the stationary
probability density function or the invariant measure of the stochastic process.
Stochastic systems undergoes the stochastic P-bifurcation when the mode of
the stationary probability density function changes in nature. It indicates the
jump of the distribution of the random variable in probability sense. There is no
direct relation between D-bifurcation and P-bifurcation [22]. To investigate the
P-bifurcation of stochastic system 10 and its polar coordinate transformation
13, we use probability density functions.
According to Section 4 of [17], the stationary probability density function p(r)
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Figure 2. Largest Lyapunov exponent of the System 10
where γ = 0.02, β = 0.01, σ2 = 0.2, α = −0.2 and σ1 is
variable.

of random variable r can be given by:

P (r) =



δ(r), −α− γ ≤ 1
4σ

2
1 ,

r

8(−γ−α)−5σ2
1−σ2

2
3σ2

1+σ2
2 exp( −3

3σ2
1+σ2

2
r2)

Γ(
8(−γ−α)−2σ2

1
6σ2

1+2σ2
2

)(
3σ2

1+σ2
2

−3 )

8(−γ−α)−2σ2
1

6σ2
1+2σ2

2

, −α− γ > 1
4σ

2
1 ,

(15)

This is clear that the extreme value point of p(r), is r0 = 0 or

r1 =

√
5σ2

1 + σ2
2 + 8(γ + α)

−6
,

when
5σ2

1+σ2
2

2 < −4(α+ γ). Consequently, we have the following statements:

(i) If −α − γ ≤ 5
8σ

2
1 + 1

8σ
2
2 ≤ σ2

1+σ2
2

2 − 2(α + γ), then lim
r→0+

P (r) = ∞ and

the random trajectories of system 13 centralized in a neighborhood of
the point r0 = 0.

(ii) If
−8(α+γ)+σ2

1+σ2
2

3 ≤ 3σ2
1 + σ2

2 < −4(α + γ) + 1
2σ

1
2 + 1

2σ
2
2 , then P (r)

is minimum at the point r0 and maximum at the point r1, but it is



410 Mehdi Fatehi Nia and Elaheh Mirzavand

Figure 3. Largest Lyapunov exponent of the System 10
where γ = 0.02, β = 0.01, σ2 = 0.2 and α, σ1 are variables.

Figure 4. Probability density function P (r) of System 13 for
parameters σ1 = σ2 = 0.1, γ = 0.01, β = 0.01 and α =
− 1

70 ,−
1
40 ,−

1
20 .

not derivable at r0. Moreover, the random trajectories of system 13
centralized in a neighborhood of the point r1.

(iii) If α + γ < −σ2
1 − 1

4σ
2
2 , then P (r) has the minimum value at the point

r0 and the maximum value at the point r1. In this case, the probability
density function P (r) becomes a smooth function at the point r1.

These results and observations lead us to the following theorem.
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Theorem 5.1. System 7 undergoes stochastic P-bifurcations as the param-
eter γ passes through the values of σ2

1 +
1
4σ

2
2 + α and 5

8σ
2
1 +

1
8σ

2
2 + α.

Consideration of 15 shows that when the parameter γ passes through the
value of α+ 1

4σ
2
1 , the probability density function P (r) varies from δ(r) to the

other function, which means that γ0 = α + 1
4σ

2
1 , is a P-bifurcation value for

System 13.

Example 5.2. As an example, we take σ1 = σ2 = 0.1, γ = 0.01, β = 0.01.
By varying parameter α, we can see qualitative changes of density function
P (r). Simple calculation implies that:

(i) If −α < 7
400 < −2α, then lim

r→0+
P (r) = ∞, (see Fig. 4, case (a)).

(ii) If −8α
3 < 6

100 < −4α − 1
100 , then P (r) has the minimum value at the

point r0 = 0 and the maximum value at the point r1, but the derivative
of P (r) at r0 does not exist, (see Fig. 4, case (b)).

(iii) If α < −9
400 , then P (r) has the minimum value at the point r0 = 0 and

the maximum value at the point r1, (see Fig. 4, case (c)).

By transforming P (r) to the probability density ρ(u, v) of the stationary
distribution in terms of Cartesian coordinates x and y (for more details see
[17, 23]), we have:

ρ(x, y) =



δ(r), −α− γ ≤ 1
4σ

2
1 ,

(u2+v2)

8(γ−α)−8σ2
1−2σ2

2
6σ2

1+2σ2
2 exp( −3

3σ2
1+σ2

2
(u2+v2))

πΓ(
8(−γ−α)−2σ2

1
6σ2

1+2σ2
2

)(
3σ2

1+σ2
2

−3 )

8(−γ−α)−2σ2
1

6σ2
1+2σ2

2

, −α− γ > 1
4σ

2
1 ,

Similar to the above argument for P (r), the extremal value point of ρ(u, v)
may be obtained. In this way we need to calculate the gradient of ρ(u, v) in
R2. Hence, we reach the following results:

(i) If −γ ≤ σ2
1 +

1
4σ

2
2 + α, then ρ(u, v) goes to infinite as (u, v) → (0, 0).

(ii) If −24(α + γ) ≤ 33σ2
1 + 9σ2

2 ≤ −32(α + γ) + σ2
1 + σ2

2 , then ρ(u, v) has
a minimum value point at the origin, but it’s partial derivatives are the
origin is not continuous. Moreover, It has a maximum value at the point

of the stable limit cycle u2 + v2 =
4σ2

1+σ2
2+4(γ+α)
−3 .

(iii) If 11
8 σ2

1 + 3
8σ

2
2 + γ < α, then ρ(u, v) has a minimum value point at

the origin, and a maximum value at the point of the stable limit cy-

cle u2 + v2 =
4σ2

1+σ2
2+4(γ+α)
−3 . Moreover, ρ(u, v) has continuous partial

derivatives.

We can summarize these results to the following theorem.

Theorem 5.3. The stochastic system 7 undergoes phenomenological bifur-
cations as the parameter α passes through the values of −σ2

1 + 1
4σ

2
2 − γ and

−11
8 σ2

1 +
−3
8 σ2

2 − γ.
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Figure 5. Variations of joint probability density ρ(u, v) of
system 13 for parameters σ1 = σ2 = 0.1, γ = 0.01, β = 0.01
and α = − 1

70 ,−
1
40 ,−

1
20 .

Figure 6. The evolution in time of u and v, when (u0, v0) =
(0.5, 0.1), β = γ = 0.01 σ1 = σ2 = 0.1, and (a) α = − 1

80 ,(b)

α = − 1
70 , (c) α = − 1

40 (d) α = − 1
20 .

Example 5.4. As an example, we take σ1 = σ2 = 0.1, γ = 0.01, β = 0.01.
By varying parameter γ for values − 1

70 ,−
1
40 ,−

1
20 , we plot qualitative changes

of density function ρ(u, v) in Fig. 5.

To verify the result in Figures 4 and 5 more clearly, we give time series
evolution of u and v directly for different values of α in Fig 6. When α = − 1

70
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σ1

σ2

E1

E2

Figure 7. If parameters σ1 and σ2 pass through two ellipses
E1 and E2, then system 13 undergoes the P-bifurcations.

Figure 8. Variations of probability density P (r) of system
13 for parameters α = −0.3, β = 0.01 and γ = 0.02. (a)
σ1, σ2 ∈ E2, (b) σ1, σ2 ∈ E1\E2, (c) σ1, σ2 out of E1.

or α = − 1
80 the time series converges to zero. When α = − 1

40 , firstly particle

moves near zero and then move periodically nearly 1 and −0.5. For α = − 1
20

we can see the optimal stochastic resonance.

5.1. P-bifurcation with respect to the noise

Here, we fix α as a constant and investigate the effect of noise intensities
on the stationary probability density function. In other words, by changing
values of σ1 and σ2 the qualitative behaviour of probability density function
changes. If parameters σ1 and σ2 choose in the ellipse E2 := σ2

1 + 1
4σ

2
2 =

−γ − α, then P (r) is a smooth function that has a maximum value at the

point r1 =
√

5σ2
1+σ2

2+8(γ+α)
−6 and a minimum value at the point r = 0. If σ1

and σ2 choose between two ellipses E1 := 5
8σ

2
1 + 1

8σ
2
2 = −γ − α and E2, then

P (r) has a maximum value at the point r1 and minimum at the point r = 0.
But it has not derivative in r = 0. If σ1 and σ2 choose out of the ellipse E1,
then lim

r→0+
P (r) = ∞ (see Fig 7). We can write these results as the following

theorem.
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Figure 9. The evolution in time of u and v, when (u0, v0) =
(0.5, 0.1), α = −0.3, β = 0.01, γ = 0.02 and (a) σ1 = σ2 = 0,
(b) σ1 = σ2 = 0.1, (c) σ1 = σ2 = 0.5 (d) σ1 = 0.9, σ2 = 0.7.

Theorem 5.5. The stochastic system 13 undergoes P-bifurcation as pa-
rameters σ1 and σ2 passes through two ellipses E1 = 5

8σ
2
1 +

1
8σ

2
2 = −γ −α and

E2 = σ2
1 +

1
4σ

2
2 = −γ − α.

Example 5.6. Let α = −0.3, β = 0.01 and γ = 0.0.2. By choosing different
values for parameters σ1 and σ2 we plot the probability density function P (r)
in Fig. 8. If σ1, σ2 ∈ E2 the probability density is a smooth function with
one maximum and one minimum point (Fig. 8 (a)), if σ1, σ2 lie between two
ellipses E1 and E2, then P (r) has one maximum and one minimum point, but
it has no derivative in the origin (Fig. 8 (a)). Finally, if σ1, σ2 lie out of two
ellipses P (r) tend to infinite if r → 0+. This example confirms P-bifurcation
conditions obtained in Theorem 5.5.
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Figure 10. 20 trajectories of 10 for γ = 0.02, β = 0.01, σ1 =
σ2 = 0.1 and α = −0.3 (left), 0.2 (right).

Fig.9 represent depicts the evolution in time of u and v for constant pa-
rameters α = −0.3, β = 0.01, γ = 0.02 and variation of diffusion coefficients
σ1, σ2. In (a), σ1 = σ2 = 0 and trajectories of system 13 are periodic and
concentrate in a neighborhood of the point r0 = 0. In (b), σ1 = σ2 = 0.1,
therefore the random trajectories of system 13 concentrate in a neighborhood
of the point r1 ≈ 0.6028. In (c) σ1 = σ2 = 0.5, therefore the random trajecto-
ries of system 13 concentrate in a neighborhood of the point r1 ≈ 0.3511. In
(d), σ1 = 0.9, σ2 = 0.7 which is out of E1 and E2. Hence, the random trajec-
tories near origin has maximum probability density. Henceforth, simulation in
Fig. 9 agree with the argument in Subsection 4.1.

6. Numerical simulation

Now, we perform a series of numerical simulations including phase portrait,
evolution in time and probability density to confirm the analytical results. The
time series is generated using Euler–Maruyama method described in [8] to the
System 10. Choose the parameter values γ = 0.02, β = 0.01, σ1 = σ2 = 0.1.
Theorem 4.1 implies that, for every α > − 9

400 , the origin is stable and for every

α < − 9
400 is unstable. In Fig. 10, we plot the time series evaluation of system

10 for initial condition (u0, v0) = (0.8, 0.8) which contains 20 trajectories. This
figure shows that for α = 0.2, all random simulated trajectories convergence to
the origin, which coincide the stability the system with these parameters at the
origin. For α = −0.3 in this case the origin is unstable. This fact, verifies the
Theorem 4.1. Figure 11 represents the phase portrait of our stochastic system.
It is a helpful evidence to study the qualitative behaviour of trajectories, respect
to initial points. This is clear that for all initial points, the phase portrait is
distributed between 0.4 < |u| < 1 that confirm our result in Figures 8 (b), 9 (b)
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Figure 11. Phase portrait for system 10 for γ = 0.02, β =
0.01, α = −0.3, σ1 = σ2 = 0.1 and initial points, (u0, v0) =
(0.1, 0.1) (a), (u0, v0) = (0.2, 0.2) (b), (u0, v0) = (0.4, 0.4) (c),
(u0, v0) = (0.9, 0.7) (d).

and 10 (a). In Fig. 12 we plot the phase portrait of system 10 for γ = 0.02, β =
0.01, α = −0.3, σ1 = 1, σ2 = 1.7 with respect to various initial conditions. For
all assumed initial conditions, firstly the trajectory has a complicated behavior
and then convergence to origin. Indeed, for these parameters (σ1, σ2) is out of
E1 and E2 and consequently P (r) tend to infinite if r → 0+.
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Figure 12. Phase portrait for systems 10 for γ = 0.02, β =
0.01, α = −0.3, σ1 = 1, σ2 = 1.7 and initial points (u0, v0) =
(0.1, 0.1) (a), (u0, v0) = (0.2, 0.2) (b), (u0, v0) = (0.2, 0.3) (c),
(u0, v0) = (0.4, 0.2) (d).
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