• Title/Summary/Keyword: probabilistic study

Search Result 1,458, Processing Time 0.029 seconds

Realistic Prediction of Post-Cracking Behaviour in Synthetic Fiber Reinforced Concrete Beams (합성섬유보강 콘크리트 보의 균열 후 거동 예측)

  • 오병환;김지철;박대균;원종필
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.900-909
    • /
    • 2002
  • Fibers play a role to increase the tensile strength and cracking resistance of concrete structures. The post cracking behavior must be clarified to predict cracking resistance of fiber reinforced concrete. The purpose of this study is to develop a realistic analysis method for the post cracking behavior of synthetic fiber reinforced concrete members. For this purpose, the cracked section is assumed to behave as a rigid body and the pullout behavior of single fiber is employed. A probabilistic approach is used to calculate effective number of fibers across crack faces. The existing theory is compared with test data and shows good agreement. The proposed theory can be efficiently used to describe the load-deflection behavior, moment-curvature relation, load-crack width relation of synthetic fiber reinforced concrete beams.

Fuzzy reliability analysis of laminated composites

  • Chen, Jianqiao;Wei, Junhong;Xu, Yurong
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.665-683
    • /
    • 2006
  • The strength behaviors of Fiber Reinforced Plastics (FRP) Composites can be greatly influenced by the properties of constitutive materials, the laminate structures, and load conditions etc, accompanied by many uncertainty factors. So the reliability study on FRP is an important subject of research. Many achievements have been made in reliability studies based on the probability theory, but little has been done on the roles played by fuzzy variables. In this paper, a fuzzy reliability model for FRP laminates is established first, in which the loads are considered as random variables and the strengths as fuzzy variables. Then a numerical model is developed to assess the fuzzy reliability. The Monte Carlo simulation method is utilized to compute the reliability of laminas under the maximum stress criterion. In the second part of this paper, a generalized fuzzy reliability model (GFRM) is proposed. By virtue of the fact that there may exist a series of states between the failure state and the function state, a fuzzy assumption for the structure state together with the probabilistic assumption for strength parameters is adopted to construct the GFRM of composite materials. By defining a generalized limit state function, the problem is converted to the conventional reliability formula that enables the first-order reliability method (FORM) applicable in calculating the reliability index. Several examples are worked out to show the validity of the models and the efficiency of the methods proposed in this paper. The parameter sensitivity analysis shows that some of the mean values of the strength parameters have great influence on the laminated composites' reliability. The differences resulting from the application of different failure criteria and different fuzzy assumptions are also discussed. It is concluded that the GFRM is feasible to use, and can provide an effective and synthetic method to evaluate the reliability of a system with different types of uncertainty factors.

Chaotic particle swarm optimization in optimal active control of shear buildings

  • Gharebaghi, Saeed Asil;Zangooeia, Ehsan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.347-357
    • /
    • 2017
  • The applications of active control is being more popular nowadays. Several control algorithms have been developed to determine optimum control force. In this paper, a Chaotic Particle Swarm Optimization (CPSO) technique, based on Logistic map, is used to compute the optimum control force of active tendon system. A chaotic exploration is used to search the solution space for optimum control force. The response control of Multi-Degree of Freedom (MDOF) shear buildings, equipped with active tendons, is introduced as an optimization problem, based on Instantaneous Optimal Active Control algorithm. Three MDOFs are simulated in this paper. Two examples out of three, which have been previously controlled using Lattice type Probabilistic Neural Network (LPNN) and Block Pulse Functions (BPFs), are taken from prior works in order to compare the efficiency of the current method. In the present study, a maximum allowable value of control force is added to the original problem. Later, a twenty-story shear building, as the third and more realistic example, is considered and controlled. Besides, the required Central Processing Unit (CPU) time of CPSO control algorithm is investigated. Although the CPU time of LPNN and BPFs methods of prior works is not available, the results show that a full state measurement is necessary, especially when there are more than three control devices. The results show that CPSO algorithm has a good performance, especially in the presence of the cut-off limit of tendon force; therefore, can widely be used in the field of optimum active control of actual buildings.

Application of risk analysis and assessment considering tunnel stability and environmental effects in tunnel design (터널 안정성 및 환경성을 고려한 위험도 평가기법의 적용)

  • Kim, Young-Geun;Kim, Do-Hyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • Recently, because of the various factors by uncertainty of underground, the risks in tunnelling have been occurred increasingly. Therefore, it is very important to estimate and control the risks considering geotechnical conditions for tunnel stability and environmental problems by tunnel construction. In this study, the risk analysis for tunnel stability was carried out by classifying the risk factors such as ground support capacity, ground settlement, the inflow of groundwater into the tunnel and the damage by the earthquake. Also, the risk assessment for the environmental problems was performed by calculating the vibration and noise by blasting and the drawdown of the groundwater level caused by tunnel construction. Each risk factor was evaluated quantitatively based on the probabilistic and statistic technique, then it was analyzed the distribution characteristic along overall tunnel site. Finally, it was evaluated that how much each risk factor influences on the construction cost with a period for tunnel construction, so it is possible to perform reasonable tunnel design which was capable of minimizing the risks in the tunnel construction.

  • PDF

Probabilistic pounding analysis of high-pier continuous rigid frame bridge with actual site conditions

  • Jia, Hongyu;Zhao, Jingang;Li, Xi;Li, Lanping;Zheng, Shixiong
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.193-202
    • /
    • 2018
  • This paper studied the probability of pounding occurred between decks and abutments of a long span high-pier continuous rigid fame bridge subjected to ground motions with local soil effect. A pounding probability analysis methodology has been proposed using peak acceleration at bedrock as intensity measure (IM) for multi-support seismic analysis. The bridge nonlinear finite element (FE) models was built with four different separation distances. Effect of actual site condition and non-uniform spatial soil profiles on seismic wave propagating from bedrock to ground surface is modelled. Pounding probability of the high-pier bridge under multi-support seismic excitations (MSSE) is analyzed based on the nonlinear incremental dynamic analysis (n-IDA). Pounding probability results under uniform excitations (UE) without actual local site effect are compared with that under MSSE with site effect. The study indicates that the required design separation length between deck and abutment under uniform excitations is larger than that under MSSE as the peak acceleration at bedrock increases. As the increase of both separation distance between deck and abutment and the peak acceleration, the probability of pounding occurred at a single abutment or at two abutments simultaneously under MSSE is less than that under UE. It is of great significance considering actual local site effect for determining the separation distance between deck and abutment through the probability pounding analysis of the high-pier bridge under MSSE.

Estimation of Conductivity Tensor of Fractured Rocks from Single-hole Packer test (단정 주입시험 결과를 이용한 단열암반의 수리전도도 분석)

  • 장근무;이은용;김창락;이찬구;김현주
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.13-25
    • /
    • 2000
  • A three-dimensional discrete fracture network model based on probabilistic characteristics of fracture geometry and transmissivity was designed to calculate the conductivity tensor and to estimate theanisotropy of conductivity. The conductivities, $K_p$, obtained from the numerical simulation of single-holepacker test corresponded well to those from the field tests. From this, it can be concluded that thefracture network model designed in this study can represent hydraulic characteristics of in-situ fractured rock mass. Block-scale conductivities, $K_b$, estimated from the modelling of steady-state flow through the REV-scale block were ranged between the arithmetic mean and harmonic mean of theconductivity estimates from packer tests. The conductivity along north-south direction was 1.4 timesgreater than that along the east-west direction. It was concluded that the anisotropy of conductivitywas insignificant. It was also found that there was a little correlation between $K_b$ and $K_p$. This would be to that the conductivities from the packer test simulation was strongly dependent on thetransmissivity and the number of fractures within the packer test intervals.

  • PDF

A Study on the Strength of Concrete Filled Tubular Columns according to Data-Base (Data Base에 의한 CFT 기둥의 내력에 관한 연구)

  • Seo, Jeong-Hwan;Yang, Young-Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.71-79
    • /
    • 2001
  • The concrete filled tubular(CFT) columns have many excellent structural properites. such as high compressive strength high ductility and high absorption capacity However the confinement effect and limiting width-thickness ratio of CFT column have not yet been clarified. Therefore. this paper aims to clarify the confinement effect of steel tubes and strength of concrete filled steel tubular columns. And this paper presents results of a probabilistic analysis based on statistical data for strength of concrete filled steel tubular columns which has been tested in Korea for recent 10 years(1991.1~2000.6).

  • PDF

Reliability based optimization of spring fatigue design problems accounting for scatter of fatigue test data (피로시험 데이터의 산포를 고려한 스프링의 신뢰성 최적설계)

  • An, Da-Wn;Won, Jun-Ho;Choi, Joo-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1314-1319
    • /
    • 2008
  • Fatigue reliability problems are nowadays actively considered in the design of mechanical components. Recently, Dimension Reduction Method using Kriging approximation (KDRM) was proposed by the authors to efficiently calculate statistical moments of the response function. This method, which is more tractable for its sensitivity-free nature and providing the response PDF in a few number of analyses, is adopted in this study for the reliability analysis. Before applying this method to the practical fatigue problems, accuracies are studied in terms of parameters of the KDRM through a number of numerical examples, from which best set of parameters are suggested. In the fatigue reliability problems, good number of experimental data are necessary to get the statistical distribution of the S-N parameters. The information, however, are not always available due to the limited expense and time. In this case, a family of curves with prediction interval, called P-S-N curve, is constructed from regression analysis. Using the KDRM, once a set of responses are available at the sample points at the mean, all the reliability analyses for each P-S-N curve can be efficiently studied without additional response evaluations. The method is applied to a spring design problem as an illustration of practical applications, in which reliability-based design optimization (RBDO) is conducted by employing stochastic response surface method which includes probabilistic constraints in itself. Resulting information is of great practical value and will be very helpful for making trade-off decision during the fatigue design.

  • PDF

Reliability-Based Design Optimization Using Akaike Information Criterion for Discrete Information (이산정보의 아카이케 정보척도를 이용한 신뢰성 기반 최적설계)

  • Lim, Woo-Chul;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.921-927
    • /
    • 2012
  • Reliability-based design optimization (RBDO) can be used to determine the reliability of a system by means of probabilistic design criteria, i.e., the possibility of failure considering stochastic features of design variables and input parameters. To assure these criteria, various reliability analysis methods have been developed. Most of these methods assume that distribution functions are continuous. However, in real problems, because real data is often discrete in form, it is important to estimate the distributions for discrete information during reliability analysis. In this study, we employ the Akaike information criterion (AIC) method for reliability analysis to determine the best estimated distribution for discrete information and we suggest an RBDO method using AIC. Mathematical and engineering examples are illustrated to verify the proposed method.

A Life Browser based on Probabilistic and Semantic Networks for Visualization and Retrieval of Everyday-Life (일상생활 시각화와 검색을 위한 확률망과 의미망 기반 라이프 브라우저)

  • Lee, Young-Seol;Hwang, Keum-Sung;Kim, Kyung-Joong;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.3
    • /
    • pp.289-300
    • /
    • 2010
  • Recently, diverse information which are location, call history, SMS history, photographs, and video can be collected constantly from mobile devices such as cellular phone, smart phone, and PDA. There are many researchers who study services for searching and abstraction of personal daily life with contextual information in mobile environment. In this paper, we introduce MyLifeBrowser which is developed in our previous work. Also, we explain LPS and correction of GPS coordinates as extensions of previous work and show LPS performance test and evaluate the performance of expanded keywords. MyLifeBrowser which provides searching personal information in mobile device and support of detecting related information according to a fragmentary keyword and common knowledge in ConceptNet. It supports the functionality of searching related locations using Bayesian network that is designed by the authors. In our experiment, we visualize real data through MyLifeBrowser and show the feasibility of LPS server and expanded keywords using both Bayesian network and ConceptNet.