• 제목/요약/키워드: probabilistic recognition

검색결과 116건 처리시간 0.023초

물체-행동 컨텍스트를 이용하는 확률 그래프 기반 물체 범주 인식 (Probabilistic Graph Based Object Category Recognition Using the Context of Object-Action Interaction)

  • 윤성백;배세호;박한재;이준호
    • 한국통신학회논문지
    • /
    • 제40권11호
    • /
    • pp.2284-2290
    • /
    • 2015
  • 다양한 외형 변화를 가지는 물체의 범주 인식성능을 향상 시키는데 있어서 사람의 행동은 매우 효과적인 컨텍스트 정보이다. 본 연구에서는 Bayesian 접근법을 기반으로 하는 간단한 확률 그래프 모델을 통해 사람의 행동을 물체 범주 인식을 위한 컨텍스트 정보로 활용하였다. 다양한 외형의 컵, 전화기, 가위 그리고 스프레이 물체에 대해 실험을 수행한 결과 물체의 용도에 대한 사람의 행동을 인식함으로써 물체 인식 성능을 8%~28%개선할 수 있었다.

용접결함의 패턴인식을 위한 분류기 알고리즘의 성능 비교 (The Performance Comparison of Classifier Algorithm for Pattern Recognition of Welding Flaws)

  • 윤성운;김창현;김재열
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.39-44
    • /
    • 2006
  • In this study, we nodestructive test based on ultrasonic test as inspection method and compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as pattern recognition algorithm of welding flasw. For this purpose, variables are applied the same to two algorithms. Where, feature variables are zooming flaw signals of reflected whole signals from welding flaws in time domain. Through this process, we confirmed advantages/disadvantages of two algorithms and identified application methods of two algorithms.

Few Samples Face Recognition Based on Generative Score Space

  • Wang, Bin;Wang, Cungang;Zhang, Qian;Huang, Jifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권12호
    • /
    • pp.5464-5484
    • /
    • 2016
  • Few samples face recognition has become a highly challenging task due to the limitation of available labeled samples. As two popular paradigms in face image representation, sparse component analysis is highly robust while parts-based paradigm is particularly flexible. In this paper, we propose a probabilistic generative model to incorporate the strengths of the two paradigms for face representation. This model finds a common spatial partition for given images and simultaneously learns a sparse component analysis model for each part of the partition. The two procedures are built into a probabilistic generative model. Then we derive the score function (i.e. feature mapping) from the generative score space. A similarity measure is defined over the derived score function for few samples face recognition. This model is driven by data and specifically good at representing face images. The derived generative score function and similarity measure encode information hidden in the data distribution. To validate the effectiveness of the proposed method, we perform few samples face recognition on two face datasets. The results show its advantages.

용접 결함 분류를 위한 초음파 형상 인식 기법 (An Ultrasonic Pattern Recognition Approach to Welding Defect Classification)

  • 송성진
    • 비파괴검사학회지
    • /
    • 제15권2호
    • /
    • pp.395-406
    • /
    • 1995
  • 초음파탐상시험을 통해 용접 결함의 종류를 정확히 구분하는 것은 정량적 비파괴시험을 위한 기본적인 단계로서 매우 중요한 문제인데, 이 문제는 최근 활발한 연구가 진행중인 초음파 형상 인식 기법의 적용에 의해 해결할 수 있다. 여기에서는 특징 추출, 특징 선택 그리고 결함 분류 등 초음파 형상 인식 기법의 세부 기술과 함께, 특히 최근 효율적인 분류기로 관심을 모으고 있는 확률 신경 회로망의 적용에 대해 논의하였다. 그리고 강 용접부 내부에 존재하는 결함을 균열, 기공, 슬래그 혼입의 3 종류로 분류하는 문제에 확률 신경 회로망을 적용한 예를 통하여, 초음파 형상 인식 기법의 효용성을 검증하였다. 또한 민감한 특징을 효율적으로 선별하는데 널리 사용되는 전방 특징 선택법과 그 적용에 대해서도 논의하였다.

  • PDF

초음파 검사 기반의 용접결함 분류성능 개선에 관한 연구 (Performance Comparison of Neural Network Algorithm for Shape Recognition of Welding Flaws)

  • 김재열;윤성운;김창현;송경석;양동조
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.287-292
    • /
    • 2004
  • In this study, we made a comparative study of backpropagation neural network and probabilistic neural network and bayesian classifier and perceptron as shape recognition algorithm of welding flaws. For this purpose, variables are applied the same to four algorithms. Here, feature variable is composed of time domain signal itself and frequency domain signal itself, Through this process, we confirmed advantages/disadvantages of four algorithms and identified application methods of few algorithms.

  • PDF

용접결함의 형상인식을 위한 신경회로망 알고리즘의 성능 비교 (Performance Comparison of Neural Network Algorithm for Shape Recognition of Welding Flaws)

  • 김재열;심재기;이동기;김창현;송경석;양동조
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.271-276
    • /
    • 2003
  • In this study, we compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as shape recognition algorithm of welding flaws. For this purpose, variables are applied the same to two algorithm. Here, feature variable is composed of time domain signal itself and frequency domain signal itself, Through this process, we comfirmed advantages/disadvantages of two algorithms and identified application methods of two algorithms.

  • PDF

칼라 패턴인식을 이용한 마모입자 분석 (Wear Debris Analysis using the Color Pattern Recognition)

  • 장래혁;;윤의성;공호성;강기홍
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.54-61
    • /
    • 2000
  • A method and results of classification of 4 types metallic wear debris were presented by using their color features. The color image of wear debris was used (or the initial data, and the color properties of the debris were specified by HSI color model. Particle was characterized by a set of statistical features derived from the distribution of HSI color model components. The initial feature set was optimized by a principal component analysis, and multidimensional scaling procedure was used for the definition of classification plane. It was found that five features, which include mean values of H and S, median S, skewness of distribution of S and I, allow to distinguish copper based alloys, red and dark iron oxides and steel particles. In this work, a method of probabilistic decision-making of class label assignment was proposed, which was based on the analysis of debris-coordinates distribution in the classification plane. The obtained results demonstrated a good availability for the automated wear particle analysis.

  • PDF

Implementation of Fingerprint Recognition System Based on the Embedded LINUX

  • Bae, Eun-Dae;Kim, Jeong-Ha;Nam, Boo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1550-1552
    • /
    • 2005
  • In this paper, we have designed a Fingerprint Recognition System based on the Embedded LINUX. The fingerprint is captured using the AS-S2 semiconductor sensor. To extract a feature vector we transform the image of the fingerprint into a column vector. The image is row-wise filtered with the low-pass filter of the Haar wavelet. The feature vectors of the different fingerprints are compared by computing with the probabilistic neural network the distance between the target feature vector and the stored feature vectors in advance. The system implemented consists of a server PC based on the LINUX and a client based on the Embedded LINUX. The client is a Tynux box-x board using a PXA-255 CPU. The algorithm is simple and fast in computing and comparing the fingerprints.

  • PDF

음소인식 오류에 강인한 N-gram 기반 음성 문서 검색 (N-gram Based Robust Spoken Document Retrievals for Phoneme Recognition Errors)

  • 이수장;박경미;오영환
    • 대한음성학회지:말소리
    • /
    • 제67호
    • /
    • pp.149-166
    • /
    • 2008
  • In spoken document retrievals (SDR), subword (typically phonemes) indexing term is used to avoid the out-of-vocabulary (OOV) problem. It makes the indexing and retrieval process independent from any vocabulary. It also requires a small corpus to train the acoustic model. However, subword indexing term approach has a major drawback. It shows higher word error rates than the large vocabulary continuous speech recognition (LVCSR) system. In this paper, we propose an probabilistic slot detection and n-gram based string matching method for phone based spoken document retrievals to overcome high error rates of phone recognizer. Experimental results have shown 9.25% relative improvement in the mean average precision (mAP) with 1.7 times speed up in comparison with the baseline system.

  • PDF