• Title/Summary/Keyword: probabilistic prediction model

Search Result 155, Processing Time 0.036 seconds

Durability Analysis and Development of Probability-Based Carbonation Prediction Model in Concrete Structure (콘크리트 구조물의 확률론적 탄산화 예측 모델 개발 및 내구성 해석)

  • Jung, Hyunjun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.343-352
    • /
    • 2010
  • Recently, many researchers have been carried out to estimate more controlled service life and long-term performance of carbonated concrete structures. Durability analysis and design based on probability have been induced to new concrete structures for design. This paper provides a carbonation prediction model based on the Fick's 1st law of diffusion using statistic data of carbonated concrete structures and the probabilistic analysis of the durability performance has been carried out by using a Bayes' theorem. The influence of concerned design parameters such as $CO_2$ diffusion coefficient, atmospheric $CO_2$ concentration, absorption quantity of $CO_2$ and the degree of hydration was investigated. Using a monitoring data, this model which was based on probabilistic approach was predicted a carbonation depth and a remaining service life at a variety of environmental concrete structures. Form the result, the application method using a realistic carbonation prediction model can be to estimate erosion-open-time, controlled durability and to determine a making decision for suitable repair and maintenance of carbonated concrete structures.

En-route Ground Speed Prediction and Posterior Inference Using Generative Model (생성 모형을 사용한 순항 항공기 향후 속도 예측 및 추론)

  • Paek, Hyunjin;Lee, Keumjin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.4
    • /
    • pp.27-36
    • /
    • 2019
  • An accurate trajectory prediction is a key to the safe and efficient operations of aircraft. One way to improve trajectory prediction accuracy is to develop a model for aircraft ground speed prediction. This paper proposes a generative model for posterior aircraft ground speed prediction. The proposed method fits the Gaussian Mixture Model(GMM) to historical data of aircraft speed, and then the model is used to generates probabilistic speed profile of the aircraft. The performances of the proposed method are demonstrated with real traffic data in Incheon Flight Information Region(FIR).

Evaluation of PNU CGCM Ensemble Forecast System for Boreal Winter Temperature over South Korea (PNU CGCM 앙상블 예보 시스템의 겨울철 남한 기온 예측 성능 평가)

  • Ahn, Joong-Bae;Lee, Joonlee;Jo, Sera
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.509-520
    • /
    • 2018
  • The performance of the newly designed Pusan National University Coupled General Circulation Model (PNU CGCM) Ensemble Forecast System which produce 40 ensemble members for 12-month lead prediction is evaluated and analyzed in terms of boreal winter temperature over South Korea (S. Korea). The influence of ensemble size on prediction skill is examined with 40 ensemble members and the result shows that spreads of predictability are larger when the size of ensemble member is smaller. Moreover, it is suggested that more than 20 ensemble members are required for better prediction of statistically significant inter-annual variability of wintertime temperature over S. Korea. As for the ensemble average (ENS), it shows superior forecast skill compared to each ensemble member and has significant temporal correlation with Automated Surface Observing System (ASOS) temperature at 99% confidence level. In addition to forecast skill for inter-annual variability of wintertime temperature over S. Korea, winter climatology around East Asia and synoptic characteristics of warm (above normal) and cold (below normal) winters are reasonably captured by PNU CGCM. For the categorical forecast with $3{\times}3$ contingency table, the deterministic forecast generally shows better performance than probabilistic forecast except for warm winter (hit rate of probabilistic forecast: 71%). It is also found that, in case of concentrated distribution of 40 ensemble members to one category out of the three, the probabilistic forecast tends to have relatively high predictability. Meanwhile, in the case when the ensemble members distribute evenly throughout the categories, the predictability becomes lower in the probabilistic forecast.

Methodology of a Probabilistic Pavement Performance Prediction Model Based on the Markov Process (확률적 포장 공용성 예측모델 개발 방법론)

  • Yoo, Pyeong-Jun;Lee, Dong-Hyun
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.1-12
    • /
    • 2002
  • Pavement Management System has a special purpose that the rehabilitation strategy applied on pavement should be executable in view of technical and economical point after new pavement open to the traffic. To achieve that purpose, a reliable pavement performance prediction model should be embeded in the system. The object of this study is to develop a probabilistic pavement performance prediction model for evaluating asphalt pavements based on the Markov chain concept. In this paper, methodology of the Markov chain modeling principle is explained, and the application of this model to asphalt pavement is described. As the results, transition matrics for predicting asphalt pavement performance are obtained, and also performance life is estimated quantitatively by this system.

  • PDF

Probabilistic bearing capacity assessment for cross-bracings with semi-rigid connections in transmission towers

  • Zhengqi Tang;Tao Wang;Zhengliang Li
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.309-321
    • /
    • 2024
  • In this paper, the effect of semi-rigid connections on the stability bearing capacity of cross-bracings in steel tubular transmission towers is investigated. Herein, a prediction method based on the hybrid model which is a combination of particle swarm optimization (PSO) and backpropagation neural network (BPNN) is proposed to accurately predict the stability bearing capacity of cross-bracings with semi-rigid connections and to efficiently conduct its probabilistic assessment. Firstly, the establishment of the finite element (FE) model of cross-bracings with semi-rigid connections is developed on the basis of the development of the mechanical model. Then, a dataset of 7425 samples generated by the FE model is used to train and test the PSO-BPNN model, and the accuracy of the proposed method is evaluated. Finally, the probabilistic assessment for the stability bearing capacity of cross-bracings with semi-rigid connections is conducted based on the proposed method and the Monte Carlo simulation, in which the geometric and material properties including the outer diameter and thickness of cross-sections and the yield strength of steel are considered as random variables. The results indicate that the proposed method based on the PSO-BPNN model has high accuracy in predicting the stability bearing capacity of cross-bracings with semi-rigid connections. Meanwhile, the semi-rigid connections could enhance the stability bearing capacity of cross-bracings and the reliability of cross-bracings would significantly increase after considering semi-rigid connections.

Cumulative damage modeling for RC girder bridges under probabilistic multiple earthquake scenarios

  • Lang Liu;Hao Luo;Mingming Wang;Yanhang Wang;Changqi Zhao;Nanyue Shi
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.303-315
    • /
    • 2024
  • This study proposes a comprehensive methodology for estimating accumulative damage of bridge structures under multiple seismic excitations, in the framework of site-specific probabilistic hazard analysis. Specifically, a typical earthquake-prone region in China is chosen to perform probabilistic seismic hazard analysis (PSHA) to find the mean annual rate (MAR) of ground motion intensity at a specific level, based on which, a mass of ground motion observations is selected to construct random earthquake sequences with various number of shocks. Then, nonlinear time history analysis is implemented on the finite element (FE) model of a RC girder bridge at the site of interest, to investigate structural responses under different earthquake sequences, and to develop predictive model for cumulative damage computation, in which, a scalar seismic intensity measure (IM) is adopted and its performance in damage prediction is discussed by an experimental column. Furthermore, a mathematic model is established to calculate occurrence probability of earthquakes with various number of shocks, based on PSHA and homogenous Poisson random process, and a modified cumulative damage indicator is proposed, accounting for probabilistic occurrence of various earthquake scenarios. At end, the applicability of the proposed methodology to main shock and aftershock scenarios is validated, and characteristics of damage accumulation under different multiple earthquake scenarios are discussed.

Application of a Hybrid System of Probabilistic Neural Networks and Artificial Bee Colony Algorithm for Prediction of Brand Share in the Market

  • Shahrabi, Jamal;Khameneh, Sara Mottaghi
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.324-334
    • /
    • 2016
  • Manufacturers and retailers are interested in how prices, promotions, discounts and other marketing variables can influence the sales and shares of the products that they produce or sell. Therefore, many models have been developed to predict the brand share. Since the customer choice models are usually used to predict the market share, here we use hybrid model of Probabilistic Neural Network and Artificial Bee colony Algorithm (PNN-ABC) that we have introduced to model consumer choice to predict brand share. The evaluation process is carried out using the same data set that we have used for modeling individual consumer choices in a retail coffee market. Then, to show good performance of this model we compare it with Artificial Neural Network with one hidden layer, Artificial Neural Network with two hidden layer, Artificial Neural Network trained with genetic algorithms (ANN-GA), and Probabilistic Neural Network. The evaluated results show that the offered model is outperforms better than other previous models, so it can be use as an effective tool for modeling consumer choice and predicting market share.

Improvement of the Ensemble Streamflow Prediction System Using Optimal Linear Correction (최적선형보정을 이용한 앙상블 유량예측 시스템의 개선)

  • Jeong, Dae-Il;Lee, Jae-Kyoung;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.6 s.155
    • /
    • pp.471-483
    • /
    • 2005
  • A monthly Ensemble Streamflow Prediction (ESP) system was developed by applying a daily rainfall-runoff model known as the Streamflow Synthesis and Reservoir Regulation (SSARR) model to the Han, Nakdong, and Seomjin River basins in Korea. This study first assesses the accuracy of the averaged monthly runoffs simulated by SSARR for the 3 basins and proposes some improvements. The study found that the SSARR modeling of the Han and Nakdong River basins tended to significantly underestimate the actual runoff levels and the modeling of the Seomjin River basinshowed a large error variance. However, by implementing optimal linear correction (OLC), the accuracy of the SSARR model was considerably improved in predicting averaged monthly runoffs of the Han and Nakdong River basins. This improvement was not seen in the modeling of the Seomjin River basin. In addition, the ESP system was applied to forecast probabilistic runoff forecasts one month in advance for the 3 river basins from 1998 to 2003. Considerably improvement was also achieved with OLC in probabilistic forecasting accuracy for the Han and Nakdong River basins, but not in that of the Seomjin River basin.

Probabilistic prediction of reservoir storage considering the uncertainty of dam inflow (댐 유입량의 불확실성을 고려한 저수량의 확률론적 예측)

  • Kwon, Minsung;Park, Dong-Hyeok;Jun, Kyung Soo;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.607-614
    • /
    • 2016
  • The well-timed water management is required to reduce drought damages. It is also necessary to induce residents in drought-affected areas to save water. Information on future storage is important in managing water resources based on the current and future states of drought. This study employed a kernel function to develop a probabilistic model for predicting dam storage considering inflow uncertainty. This study also investigated the application of the proposed probabilistic model during the extreme drought. This model can predict a probability of temporal variation of storage. Moreover, the model can be used to make a long-term plan since it can identify a temporal change of storage and estimate a required reserving volume of water to achieve the target storage.