DOI QR코드

DOI QR Code

Evaluation of PNU CGCM Ensemble Forecast System for Boreal Winter Temperature over South Korea

PNU CGCM 앙상블 예보 시스템의 겨울철 남한 기온 예측 성능 평가

  • Ahn, Joong-Bae (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Joonlee (Division of Earth Environmental System, Pusan National University) ;
  • Jo, Sera (Division of Earth Environmental System, Pusan National University)
  • 안중배 (부산대학교 지구환경시스템학부) ;
  • 이준리 (부산대학교 지구환경시스템학부) ;
  • 조세라 (부산대학교 지구환경시스템학부)
  • Received : 2018.10.17
  • Accepted : 2018.11.24
  • Published : 2018.12.31

Abstract

The performance of the newly designed Pusan National University Coupled General Circulation Model (PNU CGCM) Ensemble Forecast System which produce 40 ensemble members for 12-month lead prediction is evaluated and analyzed in terms of boreal winter temperature over South Korea (S. Korea). The influence of ensemble size on prediction skill is examined with 40 ensemble members and the result shows that spreads of predictability are larger when the size of ensemble member is smaller. Moreover, it is suggested that more than 20 ensemble members are required for better prediction of statistically significant inter-annual variability of wintertime temperature over S. Korea. As for the ensemble average (ENS), it shows superior forecast skill compared to each ensemble member and has significant temporal correlation with Automated Surface Observing System (ASOS) temperature at 99% confidence level. In addition to forecast skill for inter-annual variability of wintertime temperature over S. Korea, winter climatology around East Asia and synoptic characteristics of warm (above normal) and cold (below normal) winters are reasonably captured by PNU CGCM. For the categorical forecast with $3{\times}3$ contingency table, the deterministic forecast generally shows better performance than probabilistic forecast except for warm winter (hit rate of probabilistic forecast: 71%). It is also found that, in case of concentrated distribution of 40 ensemble members to one category out of the three, the probabilistic forecast tends to have relatively high predictability. Meanwhile, in the case when the ensemble members distribute evenly throughout the categories, the predictability becomes lower in the probabilistic forecast.

Keywords

KSHHDL_2018_v28n4_509_f0001.png 이미지

Fig. 1. Schematic diagram of PNU Global Long-term Seasonal Ensemble Prediction System of which produce 40 ensemble members on monthly basis.

KSHHDL_2018_v28n4_509_f0002.png 이미지

Fig. 2. Temporal correlation coefficients (Y axis) between ASOS and ensemble mean according to ensemble size (X axis). All possible ensemble combinations are calculated without duplication within 40 ensemble members.

KSHHDL_2018_v28n4_509_f0003.png 이미지

Fig. 3. Spatial distribution of the ratio of ensemble numbers to 40 ensembles (shaded) which have statistically significant TCC. Dashed areas denote where ENS have statistically significant TCC. Value at Upper-right corner is area averaged TCC of ENS over S. Korea region (Boxed). Statistical significance is evaluated at 95% confidence level.

KSHHDL_2018_v28n4_509_f0004.png 이미지

Fig. 4. a) Taylor diagram and box plots, b) Temporal Correlation Coefficient and c) Root Mean Square Error (unit: ℃) for temperature over S. Korea. Each ensemble member is denoted in grey open circle (a) and box (b, c) and ensemble mean is marked in red closed circle.

KSHHDL_2018_v28n4_509_f0005.png 이미지

Fig. 6. Climatology of sea level pressure (shaded), wind at 850 hPa (vector) (a, b) and geopotential height at 500 hPa (shaded), zonal wind at 300 hPa (contour) (c, d) from R2 (a, c) and ENS (b, d) during boreal winter.

KSHHDL_2018_v28n4_509_f0006.png 이미지

Fig. 7. Normalized anomaly composite map of sea level pressure (shaded) and 850 hPa wind (vector) for the case of Warm (a, c) and Cold (b, d) winter in observation (a, b) and PNU CGCM (c, d).

KSHHDL_2018_v28n4_509_f0007.png 이미지

Fig. 8. Normalized anomaly composite map of 500 hPa geopotential height (shading with light grey contour) and 300 hPa zonal wind (bold black contour) for the case of Warm (a, c) and Cold (b, d) winter in observation (a, b) and PNU CGCM (c, d).

KSHHDL_2018_v28n4_509_f0008.png 이미지

Fig. 9. Hit rate (%) of probabilistic prediction (bar) with respect to the distribution of 40 ensemble members and deterministic prediction (line).

KSHHDL_2018_v28n4_509_f0009.png 이미지

Fig. 5. Box plot of Hit rate, Heidke skill score, False Alarm Rate for the 40 ensemble members for surface temperature compared with ASOS over South Korea.

Table 1. Warm, normal and cold winters classified by the 3 × 3 contingency table based on the deterministic forecast of PNU CGCM with threshold ± 0.43σ.

KSHHDL_2018_v28n4_509_t0001.png 이미지

Table 2. Warm, normal and cold winters classified by the 3 × 3 contingency table based on the probabilistic forecast of PNU CGCM with threshold ± 0.43σ.

KSHHDL_2018_v28n4_509_t0002.png 이미지

References

  1. Ahn, J.-B., and J. A. Lee, 2001: Numerical study on the role of sea-ice using ocean general circulation model. J. Korean Soc. Oceanogr., 6, 225-233 (in Korean with English abstract).
  2. Ahn, J.-B., and J. Lee, 2015: Comparative Study on the seasonal predictability dependency of boreal winter 2 m temperature and sea surface temperature on CGCM initial conditions. Atmosphere, 25, 353-366, doi:10. 14191/Atmos.2015.25.2.353 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2015.25.2.353
  3. Ahn, J.-B., and J. Lee, 2016: A new multi-model ensemble method using nonlinear genetic algorithm: An application to boreal winter surface air temperature and precipitation prediction. J. Geophys. Res. Atmos., 121, 9263-9277, doi:10.1002/2016JD025151.
  4. Ahn, J.-B., S.-B. Lee, and S.-B. Ryoo, 2012: Development of 12-month Ensemble Prediction System Using PNU CGCM V1.1. Atmosphere, 22, 455-464 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2012.22.4.455
  5. Alves, O., M. A. Balmaseda, D. Anderson, and T. Stockdale, 2004: Sensitivity of dynamical seasonal forecasts to ocean initial conditions. Quart. J. Roy. Meteor. Soc., 130, 647-667. https://doi.org/10.1256/qj.03.25
  6. Balmaseda, M., and D. Anderson, 2009: Impact of initialization strategies and observations on seasonal forecast skill. Geophys. Res. Lett., 36, L01701.
  7. Bonan, G. B., 1998: The land surface climatology of the NCAR Land Surface Model (LSM 1.0) coupled to the NCAR Community Climate Model (CCM3). J. Climate, 11, 1307-1326. https://doi.org/10.1175/1520-0442(1998)011<1307:TLSCOT>2.0.CO;2
  8. Brankovic, C., T. N. Palmer, F. Molteni, S. Tibaldi, and U. Cubasch, 1990: Extended-range predictions with ECMWF models: Time-lagged ensemble forecasting. Quart. J. Roy. Meteor. Soc., 116, 867-912. https://doi.org/10.1002/qj.49711649405
  9. Chan, J. C. L., and C. Y. Li, 2004: The East Asia winter monsoon. Chang, C.P., Ed., East Asian Monsoon, World Scientific Publishing Co. Pet. Ltd., 54-106.
  10. Chang, C.-P., Z. Wang, and H. Hendon, 2006: The Asian winter monsoon. Wang, B., Ed., The Asian Monsoon, Praxis Springer Berlin, 89-127.
  11. Collins, M., S. F. B. Tett, and C. Cooper, 2001: The internal climate variability of $HadCM_3$, a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 17, 61-81. https://doi.org/10.1007/s003820000094
  12. Guilyardi, E., and Coauthors, 2004: Representing El Nino in coupled ocean-atmosphere GCMs: the dominant role of the atmospheric component. J. Climate, 17, 4623-4629. https://doi.org/10.1175/JCLI-3260.1
  13. Ham, H., D. Won, and Y.-S. Lee, 2017: Performance assessment of weekly ensemble prediction data at seasonal forecast system with high resolution. Atmosphere, 27, 261-276, doi:10.14191/Atmos.2017.27.3.261 (in Korean with English abstract).
  14. Huang, X.-Y., 2000: Variational analysis using spatial filters. Mon. Wea. Rev., 128, 2588-2600. https://doi.org/10.1175/1520-0493(2000)128<2588:VAUSF>2.0.CO;2
  15. Hunke, E. C., and J. K. Dukowicz, 1997: An elastic-viscous- plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 1849-1867. https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2
  16. IPCC, 2013: Climate change 2013: the physical science basis: Working group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1535 pp.
  17. Jeong, H. I., K. Ashok, B. G. Song, and Y. M. Min, 2008: Experimental 6-month Hindcast and forecast simulation using CCSM3. APCC 2008 Tech. Rep. APEC Climate Center, Korea.
  18. Jhun, J.-G., and E.-J. Lee, 2004: A new East Asian Winter Monsoon Index and associated characteristics of the winter monsoon. J. Climate, 17, 711-726. https://doi.org/10.1175/1520-0442(2004)017<0711:ANEAWM>2.0.CO;2
  19. Jo, S., and J.-B. Ahn, 2014: Improvement of CGCM prediction for wet season precipitation over Maritime Continent using a bias correction method. Int. J. Climatol., 35, 3721-3732, doi:10.1002/joc.4232.
  20. Jo, S., and J.-B. Ahn, 2017: Statistical forecast of early spring precipitation over South Korea using multiple linear regression. J. Climate Res., 12, 53-71, doi: 10.14383/cri.2017.12.1.53 (in Korean with English abstract).
  21. Jolliffe, I. T., and D. B. Stephenson, 2003: Forecast verification: a practitioner's guide in atmospheric science. Wiley and Sons, 254 pp.
  22. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEPDOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631-1643. https://doi.org/10.1175/BAMS-83-11-1631
  23. Kiehl, J. T., and P. R. Gent, 2004: The Community Climate System Model, Version 2. J. Climate, 17, 3666-3682. https://doi.org/10.1175/1520-0442(2004)017<3666:TCCSMV>2.0.CO;2
  24. Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR community climate model (CCM3). NCAR Tech. Note. NCAR/TN-420+STR, 152 pp.
  25. Kim, H.-J., and J.-B. Ahn, 2015: Improvement in Prediction of the Arctic Oscillation with a Realistic Ocean Initial Condition in a CGCM. J. Climate, 28, 8951-8967. https://doi.org/10.1175/JCLI-D-14-00457.1
  26. KMA, 2012: Construction of the abnormal climate probability forecast system using the joint seasonal forecast system between KMA and Met Office. Korean Meteorological Administration, Seoul, 97 pp.
  27. KMA, 2018: 2017 abnormal climate report, Korean Meteorological Administration, 218 pp [Available online at http://www.climate.go.kr/home/cc_data/2018/2017_abnormal_climate_report.pdf.].
  28. Lee, J., J.-B. Ahn, M.-P. Jung, and K.-M. Shim, 2017: A Study on the Method of Producing the 1 km Resolution Seasonal Prediction of Temperature Over South Korea for Boreal Winter Using Genetic Algorithm and Global Elevation Data Based on Remote Sensing. Korean J. Remote Sens., 33, 661-676, doi:10.7780/kjrs.2017.33.5.2.6 (in Korean with English abstract).
  29. Lee, S.-M., H.-S. Kang, Y.-H. Kim, Y.-B. Byun, and C. H. Cho, 2016: Verification and comparison of forecast skill between global seasonal forecast system version 5 and unified model during 2014. Atmosphere, 26, 59-72, doi:10.14191/Atmos.2016.26.1.059 (in Korean with English abstract).
  30. Lim, E.-P., H. H. Hendon, S. Langford, and O. Alves, 2012: Improvements in POAMA2 for the prediction of major climate drivers and south eastern Australian rainfall. CAWCR Tech. Rep. No. 051, 23 pp [Available online at http://www.cawcr.gov.au/technicalreports/CTR_051.pdf.].
  31. Lu, C., H. Yuan, B. E. Schwartz, and S. G. Benjamin, 2007: Short-range numerical weather prediction using time-lagged ensembles. Wea. Forecasting, 22, 580-595. https://doi.org/10.1175/WAF999.1
  32. MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072-1084. https://doi.org/10.1002/qj.2396
  33. Meehl, G. A., 1995: Global coupled general circulation models. Bull. Amer. Meteor. Soc., 76, 951-957. https://doi.org/10.1175/1520-0477-76.6.951
  34. Min, Y.-M., V. N. Kryjov, and S. M. Oh, 2014: Assessment of APCC multimodel ensemble prediction in seasonal climate forecasting: Retrospective (1983- 2003) and real-time forecasts (2008-2013). J. Geophys. Res. Atmos., 119, 12132-12150, doi:10.1002/2014JD022230.
  35. Molteni, F., and Coauthors, 2011: The new ECMWF seasonal forecast system (System 4). ECMWF Tech Memo 656, 51 pp [Available online at https://www. ecmwf.int/sites/default/files/elibrary/2011/11209-newecmwf-seasonal-forecast-system-system-4.pdf.].
  36. Oh, S.-G., and M.-S. Suh 2017: Comparison of projection skills of deterministic ensemble methods using pseudosimulation data generated from multivariate Gaussian distribution, Theor. Appl. Climatol., 129, 243-262, doi:10.1007/s00704-016-1782-1.
  37. Pacanowski, R. C., and S. M. Griffies, 1999: MOM 3.0 manual. Princeton, USA: NOAA/Geophysical Fluid Dynamics Laboratory 08542, 708 pp [Available online at https://www.gfdl.noaa.gov/wp-content/uploads/files/model_development/ocean/mom3_manual.pdf.].
  38. RDA, 2014: The Construction of Agrometeorological Information and Climate Modeling in Major Crop Production Area, Rural Development Administration, 138 pp [Available online at http://www.ndsl.kr/ndsl/search/detail/report/reportSearchResultDetail.do?cn=TRKO201400011432].
  39. RDA, 2018: Production of Dissemination of Agro-climate Information in Major Crop Production Areas. Rural Development Administration, 79 pp [Available online at http://www.ndsl.kr/ndsl/search/detail/report/reportSearchResultDetail.do?cn=TRKO201800043070].
  40. Saha, S., and Coauthors, 2014: The NCEP climate forecast system version 2. J. Climate, 27, 2185-2208, doi:10.1175/JCLI-D-12-00823.1.
  41. Seong, M.-G., M.-S. Suh, and C. Kim, 2017: Intercomparison of Prediction Skills of Ensemble Methods Using Monthly Mean Temperature Simulated by CMIP5 Models. Asia-Pac. J. Atmos. Sci., 53, 339-351, doi:10.1007/s13143-017-0039-y.
  42. Sun, J., and J.-B. Ahn, 2015: Dynamical seasonal predictability of the arctic oscillation using a CGCM. Int. J. Climatol., 35, 1342-1353, doi:10.1002/joc.4060.
  43. Takaya, Y., T. Yasuda, T. Ose, and T. Nakaegawa, 2010: Predictability of the mean location of typhoon formation in a seasonal prediction experiment with a coupled general circulation model. J. Meteor. Soc. Japan, 88, 799-812. doi:10.2151/jmsj.2010-502.
  44. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res.-Atmos., 106, 7183-7192. https://doi.org/10.1029/2000JD900719
  45. Wang, L., and W. Chen, 2010: How well do existing indices measure the strength of the East Asian Winter Monsoon?. Adv. Atmos. Sci., 27, 855-870, doi:10.1007/s00376-009-9094-3.
  46. Wilks, D. S., 2006: Statistical methods in the atmospheric sciences, International Geophysics Series, vol 91, 2nd edn. Academic Press, San Diego, 627 pp.
  47. Williams, K. D., and Coauthors, 2015: The met office global coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 1509-1524, doi:10.5194/gmd-8-1509-2015.
  48. Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997: Climatology and interannual variation of the east Asian winter monsoon: Results from the 1979-95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125, 2605-2619. https://doi.org/10.1175/1520-0493(1997)125<2605:CAIVOT>2.0.CO;2