• Title/Summary/Keyword: probabilistic forecast

Search Result 54, Processing Time 0.024 seconds

Forecasting Project Cost and Time using Fuzzy Set Theory and Contractors' Judgment

  • Alshibani, Adel
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.174-178
    • /
    • 2015
  • This paper presents a new method for forecasting construction project cost and time at completion or at any intermediate time horizon of the project duration. The method is designed to overcome identified limitations of current applications of earned value method in forecasting project cost and time. The proposed method usesfuzzy set theory to model uncertainties associated with project performance and it integrates the earned value technique and the contractors' judgement. The fuzzy set theory is applied as an alternative approach to deterministic and probabilistic methods. Using fuzzy set theory allows contractors to: (1) perform risk analysis for different scenarios of project performance indices, and (2) perform different scenarios expressing vagueness and imprecision of forecasted project cost and time using a set of measures and indices. Unlike the current applications of Earned Value Method(EVM), The proposed method has a numberof interesting features: (1) integrating contractors' judgement in forecasting project performance; (2) enabling contractors to evaluate the risk associated with cost overrun in much simpler method comparing with that of simulation, and (3) accounting for uncertainties involved in the forecasting project cost.

  • PDF

Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (II) Use of GDAPS for Ensemble Reservoir Inflow Forecasts (확률론적 중장기 댐 유입량 예측 (II) 앙상블 댐 유입량 예측을 위한 GDAPS 활용)

  • Kim, Jin-Hoon;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.275-288
    • /
    • 2006
  • This study develops ESP (Ensemble Streamflow Prediction) system by using medium-term numerical weather prediction model which is GDAPS(T213) of KMA. The developed system forecasts medium- and long-range exceedance Probability for streamflow and RPSS evaluation scheme is used to analyze the accuracy of probability forecasts. It can be seen that the daily probability forecast results contain high uncertainties. A sensitivity analysis with respect to forecast time resolution shows that uncertainties decrease and accuracy generally improves as the forecast time step increase. Weekly ESP results by using the GDAPS output with a lead time of up to 28 days are more accurately predicted than traditional ESP results because conditional probabilities are stably distributed and uncertainties can be reduced. Therefore, it can be concluded that the developed system will be useful tool for medium- and long-term reservoir inflow forecasts in order to manage water resources.

Long Range Forecast of Garlic Productivity over S. Korea Based on Genetic Algorithm and Global Climate Reanalysis Data (전지구 기후 재분석자료 및 인공지능을 활용한 남한의 마늘 생산량 장기예측)

  • Jo, Sera;Lee, Joonlee;Shim, Kyo Moon;Kim, Yong Seok;Hur, Jina;Kang, Mingu;Choi, Won Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.391-404
    • /
    • 2021
  • This study developed a long-term prediction model for the potential yield of garlic based on a genetic algorithm (GA) by utilizing global climate reanalysis data. The GA is used for digging the inherent signals from global climate reanalysis data which are both directly and indirectly connected with the garlic yield potential. Our results indicate that both deterministic and probabilistic forecasts reasonably capture the inter-annual variability of crop yields with temporal correlation coefficients significant at 99% confidence level and superior categorical forecast skill with a hit rate of 93.3% for 2 × 2 and 73.3% for 3 × 3 contingency tables. Furthermore, the GA method, which considers linear and non-linear relationships between predictors and predictands, shows superiority of forecast skill in terms of both stability and skill scores compared with linear method. Since our result can predict the potential yield before the start of farming, it is expected to help establish a long-term plan to stabilize the demand and price of agricultural products and prepare countermeasures for possible problems in advance.

Development of One Day-Ahead Renewable Energy Generation Assessment System in South Korea (우리나라 비중앙급전발전기의 하루전 출력 예측시스템 개발)

  • Lee, Yeon-Chan;Lim, Jin-Taek;Oh, Ung-Jin;N.Do, Duy-Phuong;Choi, Jae-Seok;Kim, Jin-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.505-514
    • /
    • 2015
  • This paper proposes a probabilistic generation assessment model of renewable energy generators(REGs) considering uncertainty of resources, mainly focused on Wind Turbine Generator(WTG) and Solar Cell Generator(SCG) which are dispersed widely in South Korea The proposed numerical analysis method assesses the one day-ahead generation by combining equivalent generation characteristics function and probabilistic distribution function of wind speed(WS) and solar radiation(SR) resources. The equivalent generation functions(EGFs) of the wind and solar farms are established by grouping a lot of the farms appropriately centered on Weather Measurement Station(WMS). First, the EGFs are assessed by using regression analysis method based on typical least square method from the recorded actual generation data and historical resources(WS and SR). Second, the generation of the REGs is assessed by adding the one day-ahead resources forecast, announced by WMS, to the EGFs which are formulated as third order degree polynomials using the regression analysis. Third, a Renewable Energy Generation Assessment System(REGAS) including D/B of recorded actual generation data and historical resources is developed using the model and algorithm predicting one day-ahead power output of renewable energy generators.

A stochastic flood analysis using weather forecasts and a simple catchment dynamics (기상예보와 단순 강우-유출 모형을 이용한 확률적 홍수해석)

  • Kim, Daehaa;Jang, Sangmin
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.735-743
    • /
    • 2017
  • With growing concerns about ever-increasing anthropogenic greenhouse gas emissions, it is crucial to enhance preparedness for unprecedented extreme weathers that can bring catastrophic consequences. In this study, we proposed a stochastic framework that considers uncertainty in weather forecasts for flood analyses. First, we calibrated a simple rainfall-runoff model against observed hourly hydrographs. Then, using probability density functions of rainfall depths conditioned by 6-hourly weather forecasts, we generated many stochastic rainfall depths for upcoming 48 hours. We disaggregated the stochastic 6-hour rainfalls into an hourly scale, and input them into the runoff model to quantify a probabilistic range of runoff during upcoming 48 hours. Under this framework, we assessed two rainfall events occurred in Bocheong River Basin, South Korea in 2017. It is indicated actual flood events could be greater than expectations from weather forecasts in some cases; however, the probabilistic runoff range could be intuitive information for managing flood risks before events. This study suggests combining deterministic and stochastic methods for forecast-based flood analyses to consider uncertainty in weather forecasts.

Dynamic Reserve Estimating Method with Consideration of Uncertainties in Supply and Demand (수요와 공급의 불확실성을 고려한 시간대별 순동예비력 산정 방안)

  • Kwon, Kyung-Bin;Park, Hyeon-Gon;Lyu, Jae-Kun;Kim, Yu-Chang;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1495-1504
    • /
    • 2013
  • Renewable energy integration and increased system complexities make system operator maintain supply and demand balance harder than before. To keep the grid frequency in a stable range, an appropriate spinning reserve margin should be procured with consideration of ever-changing system situation, such as demand, wind power output and generator failure. This paper propose a novel concept of dynamic reserve, which arrange different spinning reserve margin depending on time. To investigate the effectiveness of the proposed dynamic reserve, we developed a new short-term reliability criterion that estimates the probability of a spinning reserve shortage events, thus indicating grid frequency stability. Uncertainties of demand forecast error, wind generation forecast error and generator failure have been modeled in probabilistic terms, and the proposed spinning reserve has been applied to generation scheduling. This approach has been tested on the modified IEEE 118-bus system with a wind farm. The results show that the required spinning reserve margin changes depending on the system situation of demand, wind generation and generator failure. Moreover the proposed approach could be utilized even in case of system configuration change, such as wind generation extension.

A Study on the Construction of Computerized Algorithm for Proper Construction Cost Estimation Method by Historical Data Analysis (실적자료 분석에 의한 적정 공사비 산정방법의 전산화 알고리즘 구축에 관한 연구)

  • Chun Jae-Youl
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.4 s.16
    • /
    • pp.192-200
    • /
    • 2003
  • The object of this research is to develop a computerized algorithm of cost estimation method to forecast the total construction cost in the bidding stage by the historical and elemental work cost data. Traditional cost models to prepare Bill of Quantities in the korea construction industry since 1970 are not helpful to forecast the project total cost in the bidding stage because the BOQ is always constant data according to the design factors of a particular project. On the contrary, statistical models can provide cost quicker and more reliable than traditional ones if the collected cost data are sufficient enough to analyze the trends of the variables. The estimation system considers non-deterministic methods which referred to as the 'Monte Carlo simulation. The method interprets cost data to generate a probabilistic distribution for total costs from the deficient elemental experience cost distribution.

FORECAST OF DAILY MAJOR FLARE PROBABILITY USING RELATIONSHIPS BETWEEN VECTOR MAGNETIC PROPERTIES AND FLARING RATES

  • Lim, Daye;Moon, Yong-Jae;Park, Jongyeob;Park, Eunsu;Lee, Kangjin;Lee, Jin-Yi;Jang, Soojeong
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.4
    • /
    • pp.133-144
    • /
    • 2019
  • We develop forecast models of daily probabilities of major flares (M- and X-class) based on empirical relationships between photospheric magnetic parameters and daily flaring rates from May 2010 to April 2018. In this study, we consider ten magnetic parameters characterizing size, distribution, and non-potentiality of vector magnetic fields from Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) and Geostationary Operational Environmental Satellites (GOES) X-ray flare data. The magnetic parameters are classified into three types: the total unsigned parameters, the total signed parameters, and the mean parameters. We divide the data into two sets chronologically: 70% for training and 30% for testing. The empirical relationships between the parameters and flaring rates are used to predict flare occurrence probabilities for a given magnetic parameter value. Major results of this study are as follows. First, major flare occurrence rates are well correlated with ten parameters having correlation coefficients above 0.85. Second, logarithmic values of flaring rates are well approximated by linear equations. Third, using total unsigned and signed parameters achieved better performance for predicting flares than the mean parameters in terms of verification measures of probabilistic and converted binary forecasts. We conclude that the total quantity of non-potentiality of magnetic fields is crucial for flare forecasting among the magnetic parameters considered in this study. When this model is applied for operational use, it can be used using the data of 21:00 TAI with a slight underestimation of 2-6.3%.

Conditional Density based Statistical Prediction

  • J Rama Devi;K. Koteswara Rao;M Venkateswara Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.127-139
    • /
    • 2023
  • Numerous genuine issues, for example, financial exchange expectation, climate determining and so forth has inalienable arbitrariness related with them. Receiving a probabilistic system for forecast can oblige this dubious connection among past and future. Commonly the interest is in the contingent likelihood thickness of the arbitrary variable included. One methodology for expectation is with time arrangement and auto relapse models. In this work, liner expectation technique and approach for computation of forecast coefficient are given and likelihood of blunder for various assessors is determined. The current methods all need in some regard assessing a boundary of some accepted arrangement. In this way, an elective methodology is proposed. The elective methodology is to gauge the restrictive thickness of the irregular variable included. The methodology proposed in this theory includes assessing the (discretized) restrictive thickness utilizing a Markovian definition when two arbitrary factors are genuinely needy, knowing the estimation of one of them allows us to improve gauge of the estimation of the other one. The restrictive thickness is assessed as the proportion of the two dimensional joint thickness to the one-dimensional thickness of irregular variable at whatever point the later is positive. Markov models are utilized in the issues of settling on an arrangement of choices and issue that have an innate transience that comprises of an interaction that unfurls on schedule on schedule. In the nonstop time Markov chain models the time stretches between two successive changes may likewise be a ceaseless irregular variable. The Markovian methodology is especially basic and quick for practically all classes of classes of issues requiring the assessment of contingent densities.

A STUDY ON THE GENERATING SYSTEM RELIABILITY INDEX EVALUATION WITH CONSIDERING THE LOAD FORECASTING UNCERTAINTY (수요예측에 오차를 고려한 신뢰도 지수 산정에 관한 연구)

  • Song, K.Y.;Kim, Y.H.;Cha, J.M.;Oh, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.402-405
    • /
    • 1991
  • This paper represents a new method for computing reliability indices by using Large Deviation method which is one of the probabilistic production cost simulations. The reliability measures are based on the models used for the loads and for the generating unit failure states. In computing these measures it has been tacitly assumed that the values of all parameters in the models are precisely known. In fact, however, some of these values must often be chosen with a considerable degree of uncertainty involved. This is particularly true for the forecast peak loads in the load model, where there is an inherent uncertainty in the method of forecasting, which are frequently based on insufficient statistics. In this paper, the effect of load forecasting uncertainty on the LOLP(Loss of Load Probability), is investigated. By applying the Large Deviation method to the IEEE Rilability Test System, it is verified that the proposed method is generally very accurate and very fast for computing system reliability indices.

  • PDF