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Abstract 
Numerous genuine issues, for example, financial exchange 
expectation, climate determining and so forth has 
inalienable arbitrariness related with them. Receiving a 
probabilistic system for forecast can oblige this dubious 
connection among past and future. Commonly the interest 
is in the contingent likelihood thickness of the arbitrary 
variable included. One methodology for expectation is with 
time arrangement and auto relapse models. In this work, 
liner expectation technique and approach for computation 
of forecast coefficient are given and likelihood of blunder 
for various assessors is determined. The current methods all 
need in some regard assessing a boundary of some accepted 
arrangement. In this way, an elective methodology is 
proposed. The elective methodology is to gauge the 
restrictive thickness of the irregular variable included. The 
methodology proposed in this theory includes assessing the 
(discretized) restrictive thickness utilizing a Markovian 
definition when two arbitrary factors are genuinely needy, 
knowing the estimation of one of them allows us to improve 
gauge of the estimation of the other one. The restrictive 
thickness is assessed as the proportion of the two 
dimensional joint thickness to the one-dimensional 
thickness of irregular variable at whatever point the later is 
positive. Markov models are utilized in the issues of settling 
on an arrangement of choices and issue that have an innate 
transience that comprises of an interaction that unfurls on 
schedule on schedule. In the nonstop time Markov chain 
models the time stretches between two successive changes 
may likewise be a ceaseless irregular variable. The 
Markovian methodology is especially basic and quick for 
practically all classes of classes of issues requiring the 
assessment of contingent densities. 
Keywords: 
Statistical prediction, unbiased ness, Sufficiency, smoothing, 
univariate time series, Autoregressive, Markov chains, 

 
1. Introduction 
 
1.1 Statistics:  
 

Insights are estimations, identifications or assessments 
of common wonder, typically methodicallly masterminded, 

investigated and introduced as to display significant 
between connections among them. Present day insights (6) 
alludes to an assemblage of techniques and rules that have 
been created to deal with the assortment, depiction, outline 
and examination of mathematical information. In factual 
hypothesis, a "measurement" is a polite capacity of the 
information. A measurement is adequate (4) on the off 
chance that it is similarly just about as instructive as the full 
information. In numerous applications it isn't uncommon to 
have handfuls or many boundaries and a huge number of 
preparing tests. An adequate measurement is a capacity ' of 
the examples ' that contains all the data applicable to 
assessing some boundary ' '. An essential hypothesis 
concerning adequate insights is the Factorization hypothesis 
(8) which expresses that's' is adequate for ' if and just if can 
be figured into the result of two capacities: one relying just 
upon ' 'and ' ', the other relying just upon preparing 
samples.In applying measurements to a logical, mechanical, 
or cultural issue, one starts with a cycle to be contemplated.  

 
This may be a populace of individuals in a country, of 

precious stone grains in a stone, or of products made by a 
specific manufacturing plant during a given period. It might 
rather be a cycle seen at different occasions what is known 
as a period arrangement. For functional reasons, as opposed 
to ordering information about a whole interaction, one for 
the most part rather examines a picked subset of the cycle, 
called an example (5). Information are gathered about the 
example in an observational or trial setting. The information 
are then exposed to measurable examination, which fills 
two related needs (6): portrayal and surmising. Elucidating 
measurements can be utilized to sum up the information, 
either mathematically or graphically, to depict the example. 
Essential instances of mathematical descriptors incorporate 
the mean and standard deviation. Graphical outlines 
incorporate different sorts of diagrams and charts. An 
inferential measurement is utilized to show designs in the 
information, representing arbitrariness and drawing 
inductions. These deductions may appear as answers to 
yes/no inquiries (speculation testing), evaluations of 
mathematical qualities (assessment), forecast of future 
perceptions, portrayals of affiliation (connection), or 
demonstrating of connections (relapse). Other 
demonstrating procedures incorporate ANOVA, time 
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arrangement, and information mining. A significant issue 
lies in deciding the degree to which the picked test is agent. 
A measurement offers techniques to appraise and address 
for irregularity in the example and in the information 
assortment system, just as strategies for planning strong 
tests in any case. 

 
1.2 Statistical prediction:  
 

A prediction or conjecture is an assertion or guarantee 
that a specific occasion will happen later on. Generally, it 
relies upon one of two requirements if tests for quantitative 
patterns are applied. In the first place, the autonomous 
variable is quantitative, and second, the free factor is 
quantitative and a specific quantitative pattern theory is to 
be tried. In the primary case, the experimenter doesn't 
continue from specific assumptions; the experimenter 
simply searches for the best useful portrayal of the 
information. In the subsequent case, notwithstanding, the 
information are inspected concerning their similarity with 
expectations got from a specific hypothesis. An invalid 
speculation (H0) is any measurable theory (6) which 
involves one of the signs '=', '≤', or '≥' and which is testable 
by a given factual test. Its inverse is an elective speculation 
(H1), which normally is reciprocal to the H0 and against 
which the test is performed. On the off chance that the 
measurable forecast isn't identical to a solitary testable H0 
or H1, there are fundamentally two alternatives: either to 
play out a less appropriate test and decipher the 'evident' 
observational relations among the example measurements, 
or to apply more than one test. The issue of boundary 
assessment is an old style one in measurements and it very 
well may be drawn closer severally. The basic 
methodologies are most extreme probability assessment (8) 
and Bayesian assessment.  

1.3 Parameter estimation:  

Thinking about an irregular example of size ' with 
likelihood work where are the obscure boundaries. At that 
point, there will consistently be an endless number of 
elements of test esteems called measurements, which might 
be proposed as evaluations of at least one of the boundaries. 
Clearly, the best gauge would be the one that falls closest to 
the genuine estimation of the boundary to be assessed i.e.; 
the measurement whose conveyance thinks as intently as 
conceivable close to the genuine estimation of boundary is 
respected the best gauge. The essential issue is to decide the 
elements of test perceptions. The assessing capacities are 
called assessors (7). A decent assessor needs to fulfill a few 
attributes:  

Unprejudiced ness: An assessor is supposed to be fair-
minded assessor of ) if , for all , boundary space  

Consistency: assessor, in light of irregular example of size, 
is supposed to be steady assessor of , the boundary space, if 
combines to in likelihood, for example On the off chance 
that as  

Effectiveness: If in a class of predictable assessors for a 
boundary, there exists one whose examining fluctuation is 
not exactly that of any such assessor, it is known as the most 
proficient assessor. At whatever point such an assessor 
exists.  
 
1.4 Non-parametric estimation:  
 

In the parametric tests, the practical structures from 
which the examples are attracted is thought to be known and 
are worried about testing measurable theory about the 
boundaries of the capacity or assessing its boundaries. Then 
again, a non-parametric assessment (8) doesn't rely upon the 
specific useful structure from which the examples are drawn 
i.e., no presumptions are made with respect to the utilitarian 
structure. 

 
 In numerical account, deterministic numerical models 

of securities exchange conduct are inconsistent in 
foreseeing future conduct, due to different obscure variables 
that can influence the market patterns. As another option, a 
measurable forecast issue can be defined for the appropriate 
and grouped products in the stock, and the necessary 
boundaries associated with the elements of the expectation 
model or any non-parametric articles in the expectation 
model can be assessed from the information gathered 
throughout significant stretches of time. At all case, the 
patterns can be anticipated with sensible certainty. Quantum 
physical science is a surprising field of science since it 
empowers researchers to make forecasts based on 
likelihood In microchips, branch expectation grants to stay 
away from pipeline discharging at microcode expanding. 
Designing is a field that includes foreseeing disappointment 
and keeping away from it through part or framework excess. 
A few fields of science are infamous for the trouble of exact 
expectation and gauging, like programming dependability, 
catastrophic events, pandemics, demography, populace 
elements and meteorology. 

 
1.5 Organization of the Paper:    
 

The remainder of the paper is coordinated as: 
segment 2 gives insights concerning a portion of the 
accessible time arrangement models and auto relapse 
models for factual expectation. Section 3 gives brief 
presentation about Markov chains, their properties, Markov 
chains in discrete state space and ceaseless time Markov 
chains. Secret Markov models are additionally momentarily 
examined. Area 4 arrangements with straight forecast: 
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Predictions of future example, computation of expectation 
coefficients in such an approach to limit expectation 
mistake are given. Segment 5 for the most part centers on 
the Markov chain technique for the assessment of 
contingent thickness. Segment 6 shows the outcomes: 
Actual examples and anticipated examples are analyzed in 
direct expectation. Segment 7 gives the finish of the paper 
and future work that should be possible.  
 
2.Time series and autoregressive models    
                                      
2.1 Time series prediction:   
 

Most statistical forecasting methods are based on using 
historical data from a time series. A time series is a series 
of observations over time of some quantity of interest (a 

random variable).Thus, if tX  is the random variable of 

interest at time i , and if observations are taken at times

ti ,...,2,1 , then the observed values 

 tt xXxXxX  ,......,, 2211  are a time series. 

The time series prediction (TSP) is a challenge in many 
fields. In finance, experts forecast stock exchange courses 
or stock market indices; data processing specialists forecast 
the flow of information on their networks; producers of 
electricity forecast the load of the following day. A new 
challenge in the field of time series prediction is the Long-
Term Prediction: several steps ahead have to be predicted. 
Long-Term Prediction has to face growing uncertainties 
arising from various sources, for instance, accumulation of 
errors and the lack of information. The time series 
prediction problem is the prediction of future values based 
on the previous values and the current value of the time 
series                                             

 111 ,......,,ˆ   Mtttt yyyfy   

 
     The previous values and the current value of the time 
series are used as inputs for the prediction model. One-step 
ahead prediction is needed in general and is referred as 
Short-Term Prediction. But when multi-step ahead 
predictions are needed, it is called Long-Term Prediction 
problem. Unlike the Short-Term time series prediction, the 
Long-Term Prediction is typically faced with growing 
uncertainties arising from various sources. For instance, the 
accumulation of errors and the lack of information make the 
prediction more difficult. 
 
2.2 Input selection strategies 
 
     Input selection is an essential pre-processing stage to 
guarantee high accuracy, efficiency and scalability in 
problems such as machine learning, especially when the 
number of observations is relatively small compared to the 

number of inputs. It has been the subject in many 
application domains like pattern recognition, process 
identification, time series modeling and econometrics. 
Problems that occur due to poor selection of input variables 
are: 

If the input dimensionality is too large, the ‘curse of 
dimensionality’ problem may happen. Moreover, the 
computational complexity and memory requirements of the 
learning model increase. Additional unrelated inputs lead to 
poor models (lack of generalization).Understanding 
complex models (too many inputs) is more difficult than 
simple models (less inputs), which can provide comparable 
good performances.    
 
2.3 Forecasting methods for a constant level 

model 
2.3.1 Last- value forecasting method:  

The last–value forecasting method sometimes is called 
the naïve method, because statisticians consider it naïve to 
use just a sample size of one when additional relevant data 
are available. By interpreting ‘ t ‘as the current time, the 
last-value forecasting procedure uses the value of the time 

series observed at time t   tx  as the forecast at time

1t .Therefore,         tt xF 1  This forecasting procedure 

has the disadvantage of being precise i.e., its variance is 
large because it is based upon a sample of size one. 

 
2.3.2 Averaging Forecasting method:  

Instead of using just a sample size of one, this method 
uses all the data points in the time series and simply 
averages these points. Thus, the forecast of what the next 

data point will turn out to be is   txF
t

i
it /

1
1 


     this 

estimate is an excellent one if the process is entirely stable  
 
2.3.3 Moving average forecasting method:      

Rather than using very old data that may no longer be 
relevant, this method averages the data for only the last ‘ n ’ 
periods as the forecast for the next period i.e. 

    nxF
t

nti
it /

1
1 


    This forecast is easily updated from 

period to period.  
 
2.3.4 Exponential smoothing forecasting 

method: 
     This method overcomes the drawback of moving 
average method. This method uses the formula, 

          ttt FxF   11   
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Where ‘ ’  10  is called the smoothing constant. 

Thus, the forecast is just a weighted sum of the last 

observation tx  and the preceding forecast tF  for the 

period just ended. Because of this recursive relationship 

between 1tF  and tF , alternatively 1tF  can be expressed 

as 

           1tF     ........11 2
2

1   ttt xxx   

 
2.4 Common approach to univarity Time 

series:    
 There are a number of approaches to modeling time 

series. One approach is to decompose the time series into a 
trend, seasonal, and residual component. Triple exponential 
smoothing is an example of this approach. When the data 
show trend and seasonality (sometimes called periodicity) 
then triple exponential smoothing is used.  
The basic equations for the method are given by, 
 
Overall smoothing: 

           111/   ttLttt bSIYS   

Trend smoothing: 

              11 1   tttt bSSb   

Seasonal smoothing: 

            Ltttt ISYI   1/   

Forecast: 

             mLtttmt ImbSF    

 
Where,    y  is the observation,        Sis the smoothed 

observation   , B is the trend factor          I  is the seasonal 
index,          F  is the forecast at m  periods ahead ,   T  is 

an index denoting a time period , and  ,,  are constants 

that must be estimated in such a way that the MSE of the 
error is minimized. Initial values for the trend factor: The 
general formula to estimate the initial trend is given by 
                 

         LYYLYYLYYLb LLLLL /.....///1 2211    

 
2.5 Autoregressive models for linear prediction: 

     The autoregressive model is one of a group of linear 

prediction formulas that attempt to predict an output  ny  

of a system based on the previous outputs 

    ,.....2,1  nyny  and inputs

      ,......2,1,  nxnxnx .Deriving the 

linear prediction model involves determining the 

coefficients ,......, 21 aa  and ,......, 21 bb  in the equation:      

  estimatednye

        ........1......21 1021  nxbnxbnyanya    

2.5.1 Autoregressive model: 

The notation AR  p refers to the autoregressive model of 

order p . The AR  p model is written as       

tit

p

i
it XcX   




1

Where  p ,....,, 21  are the 

parameters of the model, ‘ c ’ a constant and t  is an error 

term. 

2.5.2 Moving average model: The notation MA  q  refers 

to the moving average model of order q : 

       
it

q

i
ittX 


 

1

 

Where the 1 , q ,......,2  are the parameters of the model 

and they  ,....., 1tt    are the error terms. The moving 

average model is essentially a finite impulse response filter 
with some additional interpretation placed on it. 

2.5.3 Autoregressive moving average model: The 

notation ARMA  qp,  refers to the model with p  

autoregressive terms and q  moving average terms. This 

model contains the AR  p  and MA  q models,       

it

p

i
itt XX 




1

 + it

q

i
i X 




1

  

2.5.4 Calculation of the AR parameters: 

The AR  p model is given by the equation    

tit

p

i
it XX   




1

It is based on parameters i  

where pi ,....,2,1 . Those parameters may be calculated 

using Yule-Walker equations:     

mkm

p

k
km  

2

1

 

 Where, yielding 1p  

equations. m  is the autocorrelation function of X ,   

is the standard deviation of the input noise process, and m  

is the Kronecker delta function. Because the last part of the 
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equation is non-zero only if 0m , the equation is usually 

solved by   
0 -1 -21 1

1 0 -12 2

3 2  1 0 3

   . . .

   . . . 

  =    . . .  

. ... ...  ...  .... .

. ... ...  ...  .... .

   
   

    

    
    
    
    
    
    
        

 

Representing it as a matrix for 0m , thus getting 

equation solving all  .For 0m , 2

1
0   


 k

p

k
k

 

allows us to solve 2
 . 

2.5.5 Approaches for modeling univariate time series:    
A common approach for modeling univariate time series is 
the autoregressive (AR) model. An autoregressive model is 
simply a linear regression of the current value of the series 
against one or more prior values of the series. The value of 
p  is called the order of the AR model. AR models can be 

analyzed with one of various methods, including standard 
linear least squares techniques. They also have a 
straightforward interpretation 

tptpttt AXXXX    .......2211  

Where tX  is the time series, tA  is white noise, and             

  







 



p

i
i

1

1 with   denoting the process mean. 

Another common approach for modeling univariate time 
series models is the moving average (MA) model:  

qtqtttt AAAAX    ........2211

Where tX  is the time series,   is the mean of the series, 

itA   are white noise, and q ,..., 21  are the parameters 

of the model. The value of q  is called the order of the MA 

model.  
 
2.5.6 Box Jenkins method: The first step in developing a 
Box-Jenkins model is to determine if the series is stationary 
and if there is any significant seasonality that needs to be 
modeled. Seasonality (or periodicity) can usually be 
assessed from an autocorrelation plot, a seasonal sub series 
plot, or a spectral plot (9). Box and Jenkins recommend the 
differencing approach to achieve stationary. However, 
fitting a curve and subtracting the fitted values from the 
original data can also be used in the context of Box-Jenkins 
models. 

 
 

3. Markov chain Models                                        

3.1 Markov chains:  
In mathematics, a Markov chain is a discrete-time 

stochastic process with the Markov property named after 
Andrey Markov. In such a process, the previous states are 
irrelevant for predicting the subsequent states, given 
knowledge of the current state. A Markov chain describes 
at successive times the states of a system. At these times the 
system may have changed from the state it was in the 
moment before to another or stayed in the same state. The 
changes of state are called transitions. The Markov property 
means the system is memoryless, i.e. it does not 
"remember" the states it was in before, just "knows" its 
present state, and hence bases its "decision" to which future 
state it will transit purely on the present, not considering the 
past.Nth order Markov chain: A Markov process moves 
from state to state depending only on the previous 
observations. In an nth order Markov model, the probability 
of observation depends on the previous n observations.           

 
 
 
 

i

i 1

i 1 2

i 1 2

0  order      P x

1   order      P x /

2  order      P x /

  order      P x / ...

th

st
i

nd
i i

th
i i i n

x

x x

n x x x



 

  

 

More generally, the Markov assumption for a nth order 
model is that Xi depends only on Xi-1Xi-2Xi-3….Xi-nA 

Markov chain is a sequence ,....,, 321 XXX  of random 

variables with the property (Markov property): the 
conditional probability distribution (8) of the next future 

state 1nX  given the present and past states is a function of 

the present state nX  alone, i.e.: 

         

     nnnnnn xXxXxXxXxXxX   111001 Pr,.....,,Pr  

 
The range of the variables i.e., the set of their possible 

values, is called the state space, the value of nX  being the 

state of the process at timen. There are also continuous-time 
Markov processes.  
            
3.2 Properties of Markov chains:  
The probability of going from state i  to state j  in n  time 

steps is defined as  

    iXjXp n
n

ij  0Pr        and the single-step 

transition as 
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             iXjXpij  01Pr  The n-step transition 

satisfies the Chapman-Kolmogorov equation, that for any 
nk 0 , 

              kn
rj

Sr

k
ir

n
ij ppp 


         A Markov chain is 

characterized by the conditional distribution, 

             yXxX nn 1Pr which is called the 

transition probability of the process. This is sometimes 
called the "one-step" transition probability. The probability 
of a transition in two, three, or more steps is derived from 
the one-step transition probability and the Markov property: 

    dyXyXxXXxX nnnnn    122 ,PrPr      

                          

   dyXyXyXxX nnnn   112 Pr.Pr                       

These formulas generalize to arbitrary future times kn  
by multiplying the transition probabilities and integrating 

1k   times. 

Marginal distribution: The marginal distribution 

 xX n Pr  is the distribution over states at time n . The 

initial distribution is  xX 0Pr . The evolution of the 

process through one time step is described by             
       rXprXpjX

Sr

n
rjn

Sr
rjn  


 01 PrPrPr  

the superscript  n  is intended to be an integer-valued label 

only; however, if the Markov chain is time-stationary, then 
this superscript can also be interpreted as a "raising to the 
power of". 

Reducibility: A state j  is said to be accessible from state 

i  (written as ji  ) if, given that we are in state i , there is 

a non-zero probability that at some time in the future, we 
will be in state j . That is, that there exists an n  such that 

           0Pr 0  iXjX n        A state i  is said to 

communicate (9) with state j  (written ji  ) if it is true 

that both i  is accessible from j  and that j  is accessible 

from i . A set of states C  is a communicating class if every 

pair of states in C  communicates with each other.  

Periodicity: A state i  has period k  if any return to state i  

must occur in some multiple of k  time steps. For example, 
if it is only possible to return to state i  in an even number 
of steps, then i  is periodic with period 2 . Formally, the 
period of a state is defined as 

    

  0Pr:gcd 0  iXiXnk n   

If 1k , then the state is said to be aperiodic; otherwise

 1k , the state is said to be periodic with period k . An 

irreducible Markov chain is said to be aperiodic, if its states 
are aperiodic. 

Recurrence: A state i  is said to be transient if, given that 
we start in state i , there is a non-zero probability that we 
will never return back to i . Formally, let the random 

variable iT  be the next return time to state i  (the "hitting 

time"): 

      iT  iXiXn n  0:min  

    Then, state i is transient if iT  is not finite with some 

probability:     1Pr iT  If a state i  is not transient 

then it is said to be recurrent or persistent. Although the 
hitting time is finite, it need not have a finite average. Let 

iM  be the expected (average) return time,    ii TEM 
then, state i  is positive recurrent if iM  is finite; otherwise, 

state i  is null recurrent. It can be shown that [cite reference] 
a state is recurrent if and only if 

            


0n

n
iip  

Ergodicity: A state i  is said to be ergodic if it is aperiodic 
and positive recurrent. If all states in a Markov are ergodic, 
the chain is said to be ergodic. 
 
3.3 Steady state analysis and limiting 

distributions:  
If the Markov chain is a stationary Markov chain, so 

that the process is described by a single, time-independent 
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matrix ijp , then the vector   is a stationary distribution if 

its entries j  sum to 1 and satisfy  

        ij
Si

ij p


 An irreducible chain has a stationary 

distribution if and only if all of its states are not null-
recurrent. In that case,   is unique and is related to the 
expected return time: 

              jj M/1 Further, if the chain is both 

irreducible and aperiodic, then for any i and j , 

              
n

lim
   

j
n

ij Mp /1 There is no assumption 

on the starting distribution;  

3.4 Markov chains in discrete state spaces 

 
If the state space is finite, the transition probability 

distribution can be represented as a matrix, called the 

transition matrix, with the  ji, 'th element equal to

 iXjXpp nnij  1  For a discrete state space, the 

integrations in the k -step transition probability are 

summations, and can be computed as the k 'th power of the 
transition matrix. That is, if P  is the one-step transition 

matrix, then kP  is the transition matrix for the k -step 
transition. A Markov chain is reversible if there exists an 

initial distribution   such that jijiji pp  ..If 

the state space is finite, the transition probability 
distribution can be represented by a matrix, called the 

transition matrix, with the  ji, 'th element of P  equal to             

 iXjXp nnij  1Pr P   is a stochastic 

matrix.  
 

3.5 Continuous-time Markov process 
 

In probability theory, a continuous-time Markov 

process is a stochastic process   0: ttX  that satisfies 

the Markov property and takes values from amongst the 
elements of a discrete set called the state space. The Markov 
property states that at any times 0 ts , the conditional 
probability distribution of the process at time s given the 
whole history of the process up to and including time t , 
depends only on the state of the process at time t . In effect, 

the state of the process at time s  is conditionally 
independent of the history of the process before time t , 
given the state of the process at time t .   one can define a 

Markov process as follows. Let  tX  be the random 

variable describing the state of the process at time t . Now 
prescribe that in some small increment of time from t  to 

ht  , the probability that the process makes a transition to 
some state j , given that it started in some state ji   at 

time t  , is given by             

      ,Pr hohqitXjhtX ij  where  ho

represents a quantity that goes to zero as h  goes to zero 
(see the article on order notation). Hence, over a sufficiently 
small interval of time, the probability of a particular 
transition is roughly proportional to the duration of that 
interval. Continuous-time Markov processes (8) are most 

easily defined by specifying the transition rates ijq , and 

these are typically given as the thij   elements of the 

transition rate matrix, Q  (sometimes called a Q -matrix by 

convention). Q  is a finite matrix according to whether or 

not the state space of the process is finite (it may be 
countable infinite, for example in a Poisson process where 
the state space is the non-negative integers). The most 
intuitive continuous-time Markov processes have Q-
matrices that are: conservative—the i -th diagonal element 

iiq  of Q  is given by           



ij

ijiii qqq stable—

for any given state i , all elements ijq  (and iiq ) are 

finite.(However, that a Q -matrix may be non-conservative, 

unstable or both.) When the Q -matrix is both stable and 

conservative, the probability that no transition happens in 
some time r  is 

          
       irqeisXirtX  rtt,s    Pr      

3.5.1 Related processes: Given that a process that 
started in state i  has experienced a transition out of state i , 
the conditional probability that the transition is into state j  

is 

    iij
ik

ikij qqqq // 


Using these probabilities, the 

sequence of states visited by the process (the so-called jump 
process) can be described by a (discrete-time) Markov chain. 
The transition matrix P  of the jump chain has elements 

.0,,/  iiiijij pjiqqp Another discrete-time 
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process that may be derived from a continuous-time 
Markov chain is a  -skeleton—the (discrete-time) Markov 

chain formed by observing  tX  at intervals of   units of 

time. The random variables      ,......2,,0  XXX ... 

give the sequence of states visited by the  -skeleton. 
 
3.5.2 Embedded Markov chain: 

One method of finding the stationary probability 
distribution,  , of an ergodic Continuous-time Markov 

process, Q , is by first finding its embedded Markov chain 

(EMC). Strictly speaking, the EMC is a regular discrete-
time Markov chain. Each element of the one-step transition 

probability matrix of the EMC, S  is denoted by ijs , such 

that    ,/



ik

ikijij qqs if i  is not equal to j  and is 0  

otherwise. From this, S  may be written as 

  QDS Q
11   Where  QdiagDQ   is the diagonal 

matrix of Q To find the stationary probability distribution 

vector, we must next find   such that     ,0 SI
with   being a row vector, such that all elements in   are 

greater than 0  and 1
1
  (the 1 -norm, 1x , is 

explained in Norm_(mathematics)), and the 0  on the right 

side also being a row vector of s0 . From this,   may be 

found as            ,/ 11  QQ DD   

3.6 Applications:  

Markovian systems appear extensively in physics, 
particularly statistical mechanics, Markov chains can also 
be used to model various processes in queuing theory and 
statistics. Even without describing the full structure of the 
system perfectly, the signal models can make possible very 
effective data compression through entropy coding 
techniques such as arithmetic coding. They also allow 
effective state estimation and pattern recognition. The 
world's mobile telephone systems depend on the Viterbi 
algorithm for error-correction, while Hidden Markov 
models (where the Markov transition probabilities are 
initially unknown and must also be estimated from the data) 
are extensively used in speech recognition and also in 
bioinformatics, for instance for coding region/gene 
prediction. The Page Rank of a webpage as used by Google 
is defined by a Markov chain. It is the probability to be at 
page i in the stationary distribution on the following Markov 

chain on all (known) web pages. If N  is the number of 

known web pages, and a page i  has ik  links then it has 

transition probability   Nqkq i //1   for all pages 

that are linked to and Nq /  for all pages that are not linked 

to. The parameter q  is taken to be about 0.15.Markov chain 

methods have also become very important for generating 
sequences of random numbers to accurately reflect very 
complicated desired probability distributions - a process 
called Markov chain Monte Carlo or MCMC for short.. 
Markov chains also have many applications in biological 
modeling, particularly population processes, which are 
useful in modeling processes that are (at least) analogous to 
biological populations. A recent application of Markov 
chains is in geostatistics. That is, Markov chains are used in 
two to three dimensional stochastic simulations of discrete 
variables conditional on observed data. Such an application 
is called "Markov chain geostatistics", similar with kriging 
geostatistics. The Markov chain geostatistics method is still 
in development.Markov chains can be used to model many 
games of chance. The children's games  

3.7 Hidden Markov Models (HMM) 
 
      An HMM consists of a signal modeled as a finite state 
Markov chain and an observation model that relates an 
observed process to the underlying Markov chain. Typically, 
the observation model consists of observing the state of the 
Markov chain perturbed by additive white noise. Such 
models have become increasingly popular over the last 
decade: application areas including speech processing, 
target tracking, digital communications, biomedical 
engineering, and finance. A major reason for this is the 
enormous flexibility and generality of the model and the 
fact that efficient state and parameter estimation algorithms 
exist and are well understood. In particular, the finite-state 
property means that finite dimensional state filters result 
even when the model is nonlinear. This makes the HMM 
formulation very attractive for approximating continuous 
state space nonlinear models for which finite-dimensional 
filters rarely exist. 

3.7.1 Hidden Markov model 
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State transitions in a hidden markov model (example)x - 
hidden states, y – observable outputs. 
a – transition probabilities, b – output probabilities 

A hidden Markov model (HMM) is a statistical model 
where the system being modeled is assumed to be a Markov 
process with unknown parameters, and the challenge is to 
determine the hidden parameters from the observable 
parameters. The extracted model parameters can then be 
used to perform further analysis, for example for pattern 
recognition applications. A HMM can be considered as the 
simplest dynamic Bayesian network. In a regular Markov 
model, the state is directly visible to the observer, and 
therefore the state transition probabilities are the only 
parameters. In a hidden Markov model, the state is not 
directly visible, but variables influenced by the state are 
visible. Each state has a probability distribution over the 
possible output tokens. Therefore the sequence of tokens 
generated by an HMM gives some information about the 
sequence of states. Hidden Markov models are especially 
known for their application in speech recognition and 
bioinformatics (e.g. HMMer). 

Probability of an observed sequence; 
 
The probability of observing a sequence 

     1,....,1,0  LyyyY  of length L  is given by: 

        XPXYPYP
x
 /  

  Where the sum runs over all possible hidden node 

sequences      1,.....,1,0  LxxxX . A brute force 

calculation of  YP  is intractable for realistic problems, as 

the number of possible hidden node sequences typically is 
extremely high. The calculation can however be speeded up 
enormously using a dynamic programming algorithm, 
called the forward algorithm. 

Using Hidden Markov Models:  

There are 3 canonical problems associated with HMMs  

Given the parameters of the model, compute the probability 
of a particular output sequence. This problem is solved by 
the forward algorithm. Given the parameters of the model, 
find the most likely sequence of hidden states that could 
have generated a given output sequence. This problem is 
solved by the Viterbi algorithm. Given an output sequence 
or a set of such sequences, find the most likely set of state 
transition and output probabilities. In other words, train the 

parameters of the HMM given a dataset of sequences. This 
problem is solved by the Baum-Welch algorithm. 

4. Linear Prediction    
                                     
4.1 Linear prediction in time series:      

One of the central problems in time series analysis 
is that of prediction i.e. given a series of sample values of a 
stationary discrete-time process, the future samples are to 
be predicted. Specifically, given 

     ,,.......,2,1 Mnxnxnx   it is needed to 

predict the value of  nx . The predicted value is expressed 

as a function of the given M  past samples. i.e.  

        MnxnxnxMnnnnx  ,...,2,1,...,2,1 ˆ  Now, if 

the function   is a linear function of the variables 

     ,,.......,2,1 Mnxnxnx   the prediction is 

linear. This is visualized in a M  - dimensional space 

spanned by      .,.......,2,1 Mnxnxnx   

          

   



M

k
k knxaMnnnnx

1

,...,2,1 ˆ  

Where, ka are constant coefficients? The prediction error is 

defined as 

     .,n-M,,n-n|n-x- nxnfM  21ˆ  

The subscript M  in  nfM   denotes the order of the 

prediction. i.e., the number of past samples that are used to 
predict the next sample. Hence, the problem of Linear 
Prediction (13) reduces to determining these coefficients 
subject to some condition. These coefficients are called 
linear prediction coefficients or predictor coefficients. The 
main challenge in linear prediction is estimation of 
predictor coefficients. Different algorithms and conditions 

on sak


have been proposed and are used such as 

autocorrelation method, auto covariance method, Burg’s 
method etc., (14) 
A commonly used measure for this in probability theory is 
the RMS Error, i.e., Root Mean Square Error. RMS error is 

defined as                2
nfEP MM   The error can be 

minimized by finding the best, or optimal value of .ka The 

error is minimized by differentiating E  w.r.t  ka and 

setting the result equal to zero. 
 
4.2 Autocorrelation method 

Minimizing the prediction RMS error  MP , the 

Weiner-Hopf equations are obtained. 
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             bRa    
       Where,  

                

























Ma

a

a

a

a

.

.

.
3

2

1

 

              

               
Mjiji xxER

,...,2,1, 
  

                MiMi xxEb ,..,2,11    

Here,  kR  denotes the autocorrelation function 

    knxnxE   of the sequence  nx  for a lag k . 

   kRkR xxxx  , since the process is assumed to be 

stationary.. 

In order to solve for the coefficient ka ,  

First, determine the autocorrelation function up to order 

M  for the input process  nx .Then, solve the equation,      

bRa                                       bRa 1                                     

 
4.3 Calculation of the Autocorrelation 

coefficients 
The autocorrelation function of the input process may 

not be known apriori. Hence it is to estimate it based on the 
input process itself.     

              jiabsejiR xx    

                 knxnxke    

                 iMeib   

This estimation of the autocorrelation function assumes the 
apriori knowledge of the entire process.  

     Let 
axf  be the true probability density of the random 

variable X . eX  is the estimated value. It is the function of 

previous samples Mxxx  ,.....,, 21 . Assuming all the 

samples Mxxx  ,.....,, 21  are all independent, 

      Me xxxgX  ,....,, 21  

    

       MxxxMx xfxfxfxxxgf
aaae  ......,....,, 2121                                           

          



M

i
ixMx xfxxxgf

ae
1

21 ,...,,   

         i

M

i
iM xaxxxg 


 

1
21 ,....,,          for some 

1M                                

       sa i


  can be chosen to adapt to the particular dataset. 

But the functional form of the estimator is seriously 
restrictive. 
 
4.4 Algorithm 
 

Step 1: Generate the random values Mxxxx ,.....,,, 210  

where 1M  is large. The random values are chosen by 
using the ‘rand’ function. The random values are chosen 

uniformly such that they fall in the interval  1,0 .  

 rxx ii   11       Where,     1,0  is a fixed 

constant.     r  is randomly chosen from  1,0  uniformly. 

Step 2: After obtaining the random values, they are to be 

normalized. Given       ,1,....,1,0 Mxxx  normalizing 

of values is done by: 

 Let max = maximum of   ix       for  1,....,1,0  Mi  

and min = minimum of  ix  

        for 1,.....,1,0  Mi  The normalized values are 

obtained by,                       

      minmax/min  ixiy  Then  iy  is in the 

interval   1,0  

Step 3: Now compute   1 2ˆ , ,....,e
i i i i kx x x x x    using 

the previous k  actual samples. 

Step 4: Then compare ix  and e
ix  to get the probability of 

error by using the condition  e
ii xx , where    is a 

constant. 

5.Markov chain method for prediction:  

        In linear prediction, the functional form is to be 
chosen and the parameters for the data set are to be 
estimated. But it is very critical to choose the best estimator 
for prediction. So, an alternative approach is to be used for 
prediction.  In this paper work, an approach based on 
Markov chains is proposed. 

 
5.1 Approach via Markov chains 
 

In this approach, first the transformation is to be 
done i.e., discrediting the state space and digitizing the 
functional values. Discrimination concerns the process of 
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transferring continuous models and equations into discrete 
counterparts. This process is usually carried out as a first 
step toward making them suitable for numerical evaluation 
and implementation on digital computers. In order to be 
processed on a digital computer another process named 
quantization is essential. Discrete values are intervals in a 
continuous system of values. While the number of 
continuous values for an attribute can be infinitely many, 
the number of discrete values is often few or finite. There 
are many other advantages of using discrete values over 
continuous ones. Discrete features are closer to a 
knowledge-level representation than continuous ones. Data 
can also be reduced and simplified through discretization. 
For both users and experts, discrete features are easier to 
understand, use, and explain. The transformation is done by 

discretizing the state space 1nR  to 1nQ  where  is 

finite set. 

  Let       nn bababaA ,........,, 2211      

 1321 ,,.....,,, nn qqqqq    Q , a finite set               

                            121 ,,.....,, nn xxxx    A    q

  Q  

   Digitize the functional values 

   021
,....,, xxxxf nnn 

   02,10 ,....., qqqqg nn   

      qPAP QRn 1   

 
         nnnnnn

nnQ

bababaxxxbaxP

qqqqP

,......,,,.....,,,

,....,,

221121111

211








 

 
5.2 Markov Chain Method: 
 
     The time series analysis is developed to model a set of 
observations developing in time i.e., the fundamental 
starting point for time series and for more general Markov 
models is virtually identical. A Markov model immediately 
assumes a short-term dependence structure on the variables 
at each time point, time series theory concentrates rather on 
the parametric form of dependence between the variables. 
     A Markov chain is a sequence of random variables

 TnxS n  : , where T is a countable time-set. T  is 

written as  .,....1,0:Z . The critical aspect of a Markov 

model is that it is forgetful of all but its most immediate past  
i.e., the future of the process is independent of the past given 
only its present value. For a process  , evolving on a state 
space X and governed by an overall probability law P , to 
be a time-homogenous Markov chain, there must be a set of 

transition probabilities    XAXxAxP n  ,,, , 

for appropriate states A  such that for times mn,  in Z  

   AxPxmiAP n
mimn ,;,    

that is,  AxP n ,  denotes the probability that a chain at x  

will be in the state A  after n  steps or transitions. The 

independence of nP  on the value of mii  , , is the 

Monrovian property, and the independence of nP  and m  
is the time-homogeneity property.     A Markov chain 

 ,....1,0   is a particular type of stochastic process, 

at times  Zn , taking values n  in a state space X . 

A discrete time stochastic process   on a state space is, a 

collection  ,....1,0   of random variables, with 

each i  taking values in X      the defining characteristic 

of a Markov chain is that its future trajectories depend on 
its present and its past only through the current value. The 

random variables  n ,....,, 10 , as a sequence take 

on values in the space n
n XXXX  ......10

1 , the 

 1n copies iX  of the countable space X , equipped 

with the product field  1nXB  which consists again of all 

subsets of 1nX .The conditional Probability
n

xP
0

   nnxnn xxPxx  ,.......,:,....., 1111 0
, defined for any 

sequence  nxx ,........,0    1nX  and 0x  X , and the 

initial probability distribution   on  XB  completely 

determine the distributions of  n ,........,0 . 

 
Countable space Markov chain:          The process 

 ,........., 10   taking values in the state space is a 

Markov chain if for every n , and any sequence of states 

 nxx ,........,0  , 

 

         ........,.......,, 121110110 110 nxxxnno xPxPxPxxxxP
n




   

 
The probability   is called the initial distribution of the 

chain. The process   is a time-homogenous Markov chain 

if the probabilities  11  jx xP
j

 depend only on the 

values of 1, jj xx  and are independent of the time points

j .By extending this in the obvious way from events in 
nX  to events in X  the initial distribution, followed by 

the probabilities of transitions from one step to the next are 
obtained to completely define the probabilistic motion of 
the chain. 
 

Q



IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023 
 

 

138

 

 
 If ø is a time-homogenous Markov chain, 

         
   ;:, 1 yPyxP x 

 

Then the definition can be written as          
         ,,.......,,,.......,, 121100110 nnnno xxPxxPxxPxxxxP      

 or equivalently, in terms of the conditional probabilities of 
the process  ,           

   10011 ,..,,.........   nnnnnn xxPxxxP   

This equation incorporates both the ‘loss of memory’ of 
Markov chains and the ‘time-homogeneity     For a given 

model, probability 
0xP   for a fixed 0x  is defined by 

defining the one-step transition probabilities for the process, 
and building the overall distribution using Markov 
transition matrix. 
Transition Probability Matrix:      The matrix 

  XyxyxPP  ,,,  is called a Monrovian transition 

matrix if 
             

      



XZ XZ

XyxzxPyxPyxP


,,1,,0,,0,  

The usual matrix iterates 

  XyxyxPP nn  ,,,  by setting IP 0 , 

the identity matrix and then taking inductively   

     



Xy

nn zyPyxPzxP ,,, 1 .  is called the 

n -step transition matrix. For ,XA   

        



Ay

nn yxPAxP ,:,              To define a 

Markov chain from a transition function the laws governing 

a trajectory of fixed length 1n . The random variables

 n ....,,........., 10 , thought of as sequence, take 

values in the space  ,........0
1

n
n XXX   equipped 

with  1nXB  which consists of all subsets of 1nX  

For a general time series,  

   n11n1  x| x|   nnn xPxxP                        

       
Z

nn ZPZxPxP , x| x| n1n1  

In general,    

   ZxPZxP nn   , x|, x| n1n1    for 

ZZ  But for Markov chain of order one,  

   ZxPZxP nn   , x|, x| n1n1

 Z and Z                      

  

   NNiNiiNi xxxPxxxP ,....,, x|... x| 21121i1       

For sufficiently large N   10  

     zXyXPzXyXxXPzXyxXP nnnnnnn   ,/,,,X | 1121n2  

     yXPyXxXPyxXP nnnn   1121n2 /,X |  

       zXPzyXPzXPzyXxXP n
Z

nn
Z

nn    n1n12 X |/X |,  

 
5.3 Alternative method to estimate conditional 

density:    
 

When two random variables are statistically 
dependent, knowing the value of one of them lets 
experimenter get a better estimate of the value of the other 

one. Given the set of random variables   yx,  in which 

x  is statistically related to the other random variable y
whose value can be observed. Now the objective is to 
estimate the conditional density of x  given y .  To estimate 

the conditional density  yxf /ˆ , the two dimensional joint 

density   yxf ,ˆ  for each pair of random variables formed 

in a cyclic fashion of estimated values i.e., Nyyy ,....,, 21  

and the one dimensional density  yf y
ˆ  are to be known. 

Then the conditional density is estimated as the ratio of the 
two dimensional joint density to the one dimensional 
density of random variable multiplied by constant 

correction factor.   Suppose xf  and yf  are the densities of 

the random variables x  and y respectively and yxf ,  be 

the two dimensional joint density of yx, .  For some fixed

0 , when   yf y
ˆ  then,                         

     yfHyxfyxf yyxyx
ˆ/,ˆ/ˆ

,/        

      ,0/ˆ
/ yxf yx  Otherwise. 

 
6.  Results 
 
    The probability of error is calculated for different 
estimators by considering the past samples. The threshold 
value that is taken into account for calculating the 
probability of error is also critical. In this work, the 
threshold values that are considered for calculating the 
probability of error are T=0.05 and T=0.005. The 
probability of error is calculated considering the past 100 
samples.  
 

nP
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In the third case where the moving average method is 

considered, K refers to the number of past samples that are 
considered to predict the future one. K is taken as 10 i.e., 
the history of only 10 samples is considered. 
 

𝑥௡ାଵ  ൌ෍𝑎௜𝑥௜

௡

௜ୀଵ

 

 
Where ai are the coefficients that are to be calculated using 
the autocorrelation method? It is very critical to choose the 
functional form (estimator) for linear prediction. Also it is 
not easy to choose the parameters that best fit the linear 
predictor, minimizing the error in the process. Increasing 
the number of parameters will not always lead to better 
results. Thus, Linear Prediction method has several 
restrictions. So, an alternative method based on Markov 
chains is proposed in which the conditional density is 
estimated.  
 
6. Conclusion: 
 
       In signal processing applications, the estimation of the 
predictor is a common problem. There are two different 
types of estimating the predictor. One way is considering 
the total history of the predictor and the other way is 
considering the length of the predictor. It is always critical 
how the predictor is valid to about what region. In non-
deterministic methods, the range of values that the predictor 
can have is very large. For these the nature of the predictor 
is obtained by using fuzzy systems. With linear prediction, 
the future values can be predicted using the past values. In 
order to get the best prediction results, the linear prediction 
coefficients are to be calculated in order to best fit for the 
predictor. But the time series models and autoregressive 
models for linear prediction need a functional form to be 
chosen in advance based on data set which is very critical. 
In addition the parameters are to be chosen in such a way to 
minimize the RMS error. To avoid such problems, an 
alternative approach based on Markov chains is proposed in 
which the conditional density is estimated. 
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Estimator Pe for 
T=0.005      

Pe for 
T=0.05      

F(xn)=xn-1   0.50        0.30 
𝐹ሺ𝑥௡ାଵሻ  ൌ
∑ 𝑥௜/𝑛
௡
௜ୀଵ    

  0.48      0.30 

𝐹ሺ𝑥௡ାଵሻ  ൌ
∑ 𝑥௜/𝑘
௡
௜ୀ௡ି௄ାଵ           

  0.16          0.06 


