• 제목/요약/키워드: probabilistic filtering

검색결과 42건 처리시간 0.021초

효율적인 센서 네트워크 보안을 위한 확률적인 필터링 기법 (Probabilistic Filtering Method for Efficient Sensor Network Security)

  • 김진수;신승수
    • 한국산학기술학회논문지
    • /
    • 제13권1호
    • /
    • pp.382-389
    • /
    • 2012
  • 위조된 보고서 공격은 무선 센서 네트워크에서 이벤트가 발생한 위치에 대한 송신 응답과 같은 거짓 경보를 야기하는 것뿐만 아니라 제한된 량의 에너지를 고갈시킨다. 본 논문에서는 위조된 보고서를 필터링하기 위해 확률적인 보안 필터링 기법(PFSS: Probabilistic Filtering method for Sensor network Security)을 제안한다. 제안 내용은 클러스터 헤드와 기지국과의 거리를 이용하여 기지국까지의 중간 클러스터 헤드가 검증 노드인지를 확률적으로 선택하여 보안 검증에 필요한 에너지를 줄이고, 보안 처리에 따른 핫 스팟 문제를 완화시킨다. 제안된 기법의 성능은 수식 분석과 실험을 통하여 분석하였으며, 이를 통하여 제안된 기법이 기존의 보안 검증 처리에 비해 효율적임을 알 수 있다.

A Robust Bayesian Probabilistic Matrix Factorization Model for Collaborative Filtering Recommender Systems Based on User Anomaly Rating Behavior Detection

  • Yu, Hongtao;Sun, Lijun;Zhang, Fuzhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권9호
    • /
    • pp.4684-4705
    • /
    • 2019
  • Collaborative filtering recommender systems are vulnerable to shilling attacks in which malicious users may inject biased profiles to promote or demote a particular item being recommended. To tackle this problem, many robust collaborative recommendation methods have been presented. Unfortunately, the robustness of most methods is improved at the expense of prediction accuracy. In this paper, we construct a robust Bayesian probabilistic matrix factorization model for collaborative filtering recommender systems by incorporating the detection of user anomaly rating behaviors. We first detect the anomaly rating behaviors of users by the modified K-means algorithm and target item identification method to generate an indicator matrix of attack users. Then we incorporate the indicator matrix of attack users to construct a robust Bayesian probabilistic matrix factorization model and based on which a robust collaborative recommendation algorithm is devised. The experimental results on the MovieLens and Netflix datasets show that our model can significantly improve the robustness and recommendation accuracy compared with three baseline methods.

항목 내용물의 클러스터 정보를 고려한 협력필터링 방법의 확률적 재해석 (Probabilistic Reinterpretation of Collaborative Filtering Approaches Considering Cluster Information of Item Contents)

  • 김병만;이경금;오상엽
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권9호
    • /
    • pp.901-911
    • /
    • 2005
  • 인터넷의 상업적 이용이 증가하고 인터넷에서 쉽게 얻을 수 있는 정보의 양이 풍성해지면서 정보 필터링 (information filtering) 기법은 대량의 정보 공간에서 사용자의 요구와 기호에 맞는 항목을 찾는 과정에 널리 사용되고 있다. 많은 협력필터링 (collaborative filtering) 시스템이 사용자 평가를 기반으로 사용자나 항목들 사이의 유사성을 찾아내고 이를 바탕으로 추천을 해왔지만 사용자 편향 (user bias), 비전이 연관 (non-transitive association), cold start 문제와 같이 성능을 높이기 위해 해결해야 할 문제들이 남아있다. 이 세 가지 문제는 사용자나 항목들 사이에 더 정확한 유사도를 찾아내는 과정에 장애가 된다. 본 논문에서는 이러한 문제들을 해결하기 위해 제안된 UCHM 및 ICHM 방법을 확률적으로 재해석하였다. 이 확률적 모델은 객체 (사용자 또는 품목)들을 그룹들로 구분하고 각 그룹 내에서 사용자 평가가 가우시안 분포를 따른다는 가정 하에 사용자들이 무엇을 선호할 것인지 예측한다. 실세계 자료에 대한 실험 결과, 제안된 방식이 다른 방식들과 비교할 만한 성능을 보인다는 것을 확인할 수 있었다.

Design of Robust Fuzzy-Logic Tracker for Noise and Clutter Contaminated Trajectory based on Kalman Filter

  • Byeongil Kim
    • 한국산업융합학회 논문집
    • /
    • 제27권2_1호
    • /
    • pp.249-256
    • /
    • 2024
  • Traditional methods for monitoring targets rely heavily on probabilistic data association (PDA) or Kalman filtering. However, achieving optimal performance in a densely congested tracking environment proves challenging due to factors such as the complexities of measurement, mathematical simplification, and combined target detection for the tracking association problem. This article analyzes a target tracking problem through the lens of fuzzy logic theory, identifies the fuzzy rules that a fuzzy tracker employs, and designs the tracker utilizing fuzzy rules and Kalman filtering.

텍스트 마이닝 및 자동 추론 기반 생물학 지식 발견 시스템을 위한 확률 기반 필터링 (Probabilistic filtering for a biological knowledge discovery system with text mining and automatic inference)

  • 이희진;박종철
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.139-147
    • /
    • 2012
  • 본 논문에서는 텍스트 마이닝을 통해 생물학 문헌에서 분자 수준의 사건(event) 정보를 자동으로 추출하고, 이들 사건 정보를 기반으로 새로운 생물학 지식을 자동 추론하는 텍스트 마이닝 - 추론 통합 구조의 시스템을 다룬다. 이러한 통합 구조의 지식 발견 시스템은 미리 추출되어 데이터베이스에 등록된 정보만을 입력으로 사용하는 시스템들에 비하여 최신 정보를 보다 빨리 사용할 수 있고, 미리 정의된 형식 이외의 다양한 정보를 사용할 수 있다는 장점이 있다. 반면, 텍스트 마이닝 정보 추출 결과를 그대로 사용하기 때문에 텍스트 마이닝 모듈(module)의 성능에 따라 전체 시스템의 효용성이 크게 저하될 수도 있다는 문제가 있다. 본 논문에서는 확률 기반 필터링(filtering) 방법을 제안하여, 텍스트 마이닝 결과 중 양성 오류(false positive)를 효과적으로 제거함으로써 전체 지식 발견 시스템의 정확도 및 효용성을 높이고자 한다. 본 논문에서 제안한 확률 기반 필터링 방법은 기준(baseline) 방법으로 사용된 횟수 기반 필터링 방법보다 높은 성능을 보였다.

센서 네트워크 기반의 확률적 투표 여과 기법에서 에너지 향상을 위한 인증 키 분배 기법 (Authentication Key Distribution Method for Improving Energy Efficiency in Probabilistic Voting-based Filtering Scheme based Sensor Networks)

  • 남수만;조대호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제51차 동계학술대회논문집 23권1호
    • /
    • pp.271-272
    • /
    • 2015
  • 센서 네트워크에서 센서는 제한적인 자원 때문에 다양한 공격으로부터 취약하다. 이러한 공격 중 하나인 허위 보고서 삽입 공격은 불필요한 에너지 소모와 허위 알람을 유발한다. 이 공격의 피해를 줄이기 위한 확률적 투표 여과 기법은 검증 노드를 통해 보고서의 맥들을 검증한다. 그러나 허위 보고서가 검증 노드까지 도달하는 데 불필요한 에너지가 소비된다. 본 논문에서, 우리의 제안 기법은 소스의 다음 노드에 키를 배포하여 허위 보고서 삽입 공격을 효율적으로 감지한다. 따라서 제안 기법은 기존 기법보다 에너지 효율성 향상을 기대할 수 있다.

  • PDF

Tensor-based tag emotion aware recommendation with probabilistic ranking

  • Lim, Hyewon;Kim, Hyoung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.5826-5841
    • /
    • 2019
  • In our previous research, we proposed a tag emotion-based item recommendation scheme. The ternary associations among users, items, and tags are described as a three-order tensor in order to capture the emotions in tags. The candidates for recommendation are created based on the latent semantics derived by a high-order singular value decomposition technique (HOSVD). However, the tensor is very sparse because the number of tagged items is smaller than the amount of all items. The previous research do not consider the previous behaviors of users and items. To mitigate the problems, in this paper, the item-based collaborative filtering scheme is used to build an extended data. We also apply the probabilistic ranking algorithm considering the user and item profiles to improve the recommendation performance. The proposed method is evaluated based on Movielens dataset, and the results show that our approach improves the performance compared to other methods.

국지적 탐색의 효율향상을 위한 확률적 여과 기법 (A Probabilistic Filtering Technique for Improving the Efficiency of Local Search)

  • 강병호;류광렬
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권3호
    • /
    • pp.246-254
    • /
    • 2007
  • 국지적 탐색 알고리즘들은 최적해를 찾기 위해서 이웃해를 생성하여 평가한 뒤에 좋은 해로 이동하는 과정을 반복한다. 본 논문에서는 생성된 이웃해를 원래의 목적함수로 평가하기 전에 간단한 예비 평가 휴리스틱을 이용하여 미리 평가함으로써, 좋지 않아 보이는 이웃해를 확률적으로 여과할 수 있는 기법을 소개한다. 이 확률적 여과 기법은 결국에 버려질 이웃해를 엄밀하게 평가하는데 낭비되는 시간을 절약하고, 이 시간 동안 보다 좋아 보이는 이웃해를 더 많이 탐색할 수 있게 함으로써 탐색 효율을 높이는 기법이다. 대규모의 실세계 최적화 문제인 교통망에서의 교통 신호 최적화 문제와 작업 일정 계획에서의 부하평준화 문제를 대상으로 한 실험에서 확률적 여과를 적용한 경우가 적용하지 않은 경우에 비해 주어진 탐색시간 동안 더 좋은 질의 최적해를 얻을 수 있는 것으로 확인되었다.

클러터 환경하에서 기동표적의 추적을 위한 가변차원 확률 데이터 연관 필터 (A Variable Dimensional Structure with Probabilistic Data Association Filter for Tracking a Maneuvering Target in Clutter Environment)

  • 안병완;최재원;송택렬
    • 제어로봇시스템학회논문지
    • /
    • 제9권10호
    • /
    • pp.747-754
    • /
    • 2003
  • An enhancement of the probabilistic data association filter is presented for tracking a single maneuvering target in clutter environment. The use of the variable dimensional structure leads the probabilistic data association filter to adjust to real motion of a target. The detection of the maneuver for the model switching is performed by the acceleration estimates taken from a bias estimator of the two stage Kalman filter. The proposed algorithm needs low computational power since it is implemented with a single filtering procedure. A simple Monte Carlo simulation was performed to compare the performance of the proposed algorithm and the IMMPDA filter.

A Study of Efficiency Information Filtering System using One-Hot Long Short-Term Memory

  • Kim, Hee sook;Lee, Min Hi
    • International Journal of Advanced Culture Technology
    • /
    • 제5권1호
    • /
    • pp.83-89
    • /
    • 2017
  • In this paper, we propose an extended method of one-hot Long Short-Term Memory (LSTM) and evaluate the performance on spam filtering task. Most of traditional methods proposed for spam filtering task use word occurrences to represent spam or non-spam messages and all syntactic and semantic information are ignored. Major issue appears when both spam and non-spam messages share many common words and noise words. Therefore, it becomes challenging to the system to filter correct labels between spam and non-spam. Unlike previous studies on information filtering task, instead of using only word occurrence and word context as in probabilistic models, we apply a neural network-based approach to train the system filter for a better performance. In addition to one-hot representation, using term weight with attention mechanism allows classifier to focus on potential words which most likely appear in spam and non-spam collection. As a result, we obtained some improvement over the performances of the previous methods. We find out using region embedding and pooling features on the top of LSTM along with attention mechanism allows system to explore a better document representation for filtering task in general.