• Title/Summary/Keyword: probabilistic estimates

Search Result 90, Processing Time 0.026 seconds

PROBABILISTIC MEASUREMENT OF RISK ASSOCIATED WITH INITIAL COST ESTIMATES

  • Seokyon Hwang
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.488-493
    • /
    • 2013
  • Accurate initial cost estimates are essential to effective management of construction projects where many decisions are made in the course of project management by referencing the estimates. In practice, the initial estimates are frequently derived from historical actual cost data, for which standard distribution-based techniques are widely applied in the construction industry to account for risk associated with the estimates. This approach assumes the same probability distribution of estimate errors for any selected estimates. This assumption, however, is not always satisfied. In order to account for the probabilistic nature of estimate errors, an alternative method for measuring the risk associated with a selected initial estimate is developed by applying the Bayesian probability approach. An application example include demonstrates how the method is implemented. A hypothesis test is conducted to reveal the robustness of the Bayesian probability model. The method is envisioned to effectively complement cost estimating methods that are currently in use by providing benefits as follows: (1) it effectively accounts for the probabilistic nature of errors in estimates; (2) it is easy to implement by using historical estimates and actual costs that are readily available in most construction companies; and (3) it minimizes subjective judgment by using quantitative data only.

  • PDF

Assessment of predictability of categorical probabilistic long-term forecasts and its quantification for efficient water resources management (효율적인 수자원관리를 위한 범주형 확률장기예보의 예측력 평가 및 정량화)

  • Son, Chanyoung;Jeong, Yerim;Han, Soohee;Cho, Younghyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.8
    • /
    • pp.563-577
    • /
    • 2017
  • As the uncertainty of precipitation increases due to climate change, seasonal forecasting and the use of weather forecasts become essential for efficient water resources management. In this study, the categorical probabilistic long-term forecasts implemented by KMA (Korea Meteorological Administration) since June 2014 was evaluated using assessment indicators of Hit Rate, Reliability Diagram, and Relative Operating Curve (ROC) and a technique for obtaining quantitative precipitation estimates based on probabilistic forecasts was proposed. The probabilistic long-term forecasts showed its maximum predictability of 48% and the quantified precipitation estimates were closely matched with actual observations; maximum correlation coefficient (R) in predictability evaluation for 100% accurate and actual weather forecasts were 0.98 and 0.71, respectively. A precipitation quantification approach utilizing probabilistic forecasts proposed in this study is expected to enable water management considering the uncertainty of precipitation. This method is also expected to be a useful tool for supporting decision-making in the long-term planning for water resources management and reservoir operations.

Probabilistic seismic demand models and fragility estimates for reinforced concrete bridges with base isolation

  • Gardoni, Paolo;Trejo, David
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.527-555
    • /
    • 2013
  • This paper proposes probabilistic models for estimating the seismic demands on reinforced concrete (RC) bridges with base isolation. The models consider the shear and deformation demands on the bridge columns and the deformation demand on the isolation devices. An experimental design is used to generate a population of bridges based on the AASHTO LRFD Bridge Design Specifications (AASHTO 2007) and the Caltrans' Seismic Design Criteria (Caltrans 1999). Ground motion records are used for time history analysis of each bridge to develop probabilistic models that are practical and are able to account for the uncertainties and biases in the current, common deterministic model. As application of the developed probabilistic models, a simple method is provided to determine the fragility of bridges. This work facilitates the reliability-based design for this type of bridges and contributes to the transition from limit state design to performance-based design.

Probabilistic estimates of corrosion rate of fuel tank structures of aging bulk carriers

  • Ivosevic, Spiro;Mestrovic, Romeo;Kovac, Natasa
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.165-177
    • /
    • 2019
  • This paper considers corrosion wastage of two ship hull structure members as a part of investigated fuel oil tanks of 25 aging bulk carriers. Taking into account that many factors which influence corrosion wastage of ship hull structures are of uncertain nature, the related corrosion rate ($c_1$) is considered here as a real-valued continuous distribution, assuming that the corrosion wastage starts after 5, 6 or 7 years. In all considered cases, by using available data and applying three basic statistical tests, it is established that between two-parameter continuous distributions, normal, Weibull and logistic distributions are best fitted distributions for the mentioned corrosion rate ($c_1$). Note that the presented statistical, numerical and graphical results concerning two mentioned ship hull structure members allow to compare and discuss the corresponding probabilistic estimates for the corrosion rate ($c_1$).

A Study on IMM-PDAF based Sensor Fusion Method for Compensating Lateral Errors of Detected Vehicles Using Radar and Vision Sensors (레이더와 비전 센서를 이용하여 선행차량의 횡방향 운동상태를 보정하기 위한 IMM-PDAF 기반 센서융합 기법 연구)

  • Jang, Sung-woo;Kang, Yeon-sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.633-642
    • /
    • 2016
  • It is important for advanced active safety systems and autonomous driving cars to get the accurate estimates of the nearby vehicles in order to increase their safety and performance. This paper proposes a sensor fusion method for radar and vision sensors to accurately estimate the state of the preceding vehicles. In particular, we performed a study on compensating for the lateral state error on automotive radar sensors by using a vision sensor. The proposed method is based on the Interactive Multiple Model(IMM) algorithm, which stochastically integrates the multiple Kalman Filters with the multiple models depending on lateral-compensation mode and radar-single sensor mode. In addition, a Probabilistic Data Association Filter(PDAF) is utilized as a data association method to improve the reliability of the estimates under a cluttered radar environment. A two-step correction method is used in the Kalman filter, which efficiently associates both the radar and vision measurements into single state estimates. Finally, the proposed method is validated through off-line simulations using measurements obtained from a field test in an actual road environment.

A Variable Dimensional Structure with Probabilistic Data Association Filter for Tracking a Maneuvering Target in Clutter Environment (클러터 환경하에서 기동표적의 추적을 위한 가변차원 확률 데이터 연관 필터)

  • 안병완;최재원;송택렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.747-754
    • /
    • 2003
  • An enhancement of the probabilistic data association filter is presented for tracking a single maneuvering target in clutter environment. The use of the variable dimensional structure leads the probabilistic data association filter to adjust to real motion of a target. The detection of the maneuver for the model switching is performed by the acceleration estimates taken from a bias estimator of the two stage Kalman filter. The proposed algorithm needs low computational power since it is implemented with a single filtering procedure. A simple Monte Carlo simulation was performed to compare the performance of the proposed algorithm and the IMMPDA filter.

A Penalized Principal Components using Probabilistic PCA

  • Park, Chong-Sun;Wang, Morgan
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.151-156
    • /
    • 2003
  • Variable selection algorithm for principal component analysis using penalized likelihood method is proposed. We will adopt a probabilistic principal component idea to utilize likelihood function for the problem and use HARD penalty function to force coefficients of any irrelevant variables for each component to zero. Consistency and sparsity of coefficient estimates will be provided with results of small simulated and illustrative real examples.

  • PDF

Estimating the Population Variability Distribution Using Dependent Estimates From Generic Sources (종속적 문헌 추정치를 이용한 모집단 변이 분포의 추정)

  • 임태진
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.3
    • /
    • pp.43-59
    • /
    • 1995
  • This paper presents a method for estimating the population variability distribution of the failure parameter (failure rate or failure probability) for each failure mode considered in PSA (Probabilistic Safety Assessment). We focus on the utilization of generic estimates from various industry compendia for the estimation. The estimates are complicated statistics of failure data from plants. When the failure data referred in two or more sources are overlapped, dependency occurs among the estimates provided by the sources. This type of problem is first addressed in this paper. We propose methods based on ML-II estimation in Bayesian framework and discuss the characteristics of the proposed estimators. The proposed methods are easy to apply in real field. Numerical examples are also provided.

  • PDF

The Solution of Vehicle Scheduling Problems with Multiple Objectives in a Probabilistic Environment

  • Park, Yang-Byung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.14 no.1
    • /
    • pp.119-131
    • /
    • 1988
  • Vehicle Scheduling Problem (VSP) is a generic name given to a whole class of problems involving the visiting of "stations" by "vehicles," where a time is associated with each activity. The studies performed to date have the common feature of a single objective while satisfying a set of restrictions and known customer supplies or demands. However, VSPs may involve relevant multiple objectives and probabilistic supplies or demands at stations, creating multicriteria stochastic VSPs. This paper proposes a heuristic algorithm based on goal programming approach to schedule the most satisfactory vehicle routes of a bicriteria VSP with probabilistic supplies at stations. The two relevant objectives are the minimization of the expected travel distance of vehicles and the minimization of the due time violation for collection service at stations by vehicles. The algorithm developed consists of three major stages. In the first stage, an artificial capacity of vehicle is determined, on the basis of decision maker's subjective estimates. The second one clusters a set of stations into subsets by applying an efficient cluster method developed. In the third one, the stations in each subset are scheduled by applying an iterative goal programming heuristic procedure to each cluster.

  • PDF