• Title/Summary/Keyword: privacy-preserving techniques

Search Result 40, Processing Time 0.017 seconds

Enhanced Hybrid Privacy Preserving Data Mining Technique

  • Kundeti Naga Prasanthi;M V P Chandra Sekhara Rao;Ch Sudha Sree;P Seshu Babu
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.99-106
    • /
    • 2023
  • Now a days, large volumes of data is accumulating in every field due to increase in capacity of storage devices. These large volumes of data can be applied with data mining for finding useful patterns which can be used for business growth, improving services, improving health conditions etc. Data from different sources can be combined before applying data mining. The data thus gathered can be misused for identity theft, fake credit/debit card transactions, etc. To overcome this, data mining techniques which provide privacy are required. There are several privacy preserving data mining techniques available in literature like randomization, perturbation, anonymization etc. This paper proposes an Enhanced Hybrid Privacy Preserving Data Mining(EHPPDM) technique. The proposed technique provides more privacy of data than existing techniques while providing better classification accuracy. The experimental results show that classification accuracies have increased using EHPPDM technique.

Performance Analysis of Perturbation-based Privacy Preserving Techniques: An Experimental Perspective

  • Ritu Ratra;Preeti Gulia;Nasib Singh Gill
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.81-88
    • /
    • 2023
  • In the present scenario, enormous amounts of data are produced every second. These data also contain private information from sources including media platforms, the banking sector, finance, healthcare, and criminal histories. Data mining is a method for looking through and analyzing massive volumes of data to find usable information. Preserving personal data during data mining has become difficult, thus privacy-preserving data mining (PPDM) is used to do so. Data perturbation is one of the several tactics used by the PPDM data privacy protection mechanism. In Perturbation, datasets are perturbed in order to preserve personal information. Both data accuracy and data privacy are addressed by it. This paper will explore and compare several perturbation strategies that may be used to protect data privacy. For this experiment, two perturbation techniques based on random projection and principal component analysis were used. These techniques include Improved Random Projection Perturbation (IRPP) and Enhanced Principal Component Analysis based Technique (EPCAT). The Naive Bayes classification algorithm is used for data mining approaches. These methods are employed to assess the precision, run time, and accuracy of the experimental results. The best perturbation method in the Nave-Bayes classification is determined to be a random projection-based technique (IRPP) for both the cardiovascular and hypothyroid datasets.

Robustness Analysis of a Novel Model-Based Recommendation Algorithms in Privacy Environment

  • Ihsan Gunes
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1341-1368
    • /
    • 2024
  • The concept of privacy-preserving collaborative filtering (PPCF) has been gaining significant attention. Due to the fact that model-based recommendation methods with privacy are more efficient online, privacy-preserving memory-based scheme should be avoided in favor of model-based recommendation methods with privacy. Several studies in the current literature have examined ant colony clustering algorithms that are based on non-privacy collaborative filtering schemes. Nevertheless, the literature does not contain any studies that consider privacy in the context of ant colony clustering-based CF schema. This study employed the ant colony clustering model-based PPCF scheme. Attacks like shilling or profile injection could potentially be successful against privacy-preserving model-based collaborative filtering techniques. Afterwards, the scheme's robustness was assessed by conducting a shilling attack using six different attack models. We utilize masked data-based profile injection attacks against a privacy-preserving ant colony clustering-based prediction algorithm. Subsequently, we conduct extensive experiments utilizing authentic data to assess its robustness against profile injection attacks. In addition, we evaluate the resilience of the ant colony clustering model-based PPCF against shilling attacks by comparing it to established PPCF memory and model-based prediction techniques. The empirical findings indicate that push attack models exerted a substantial influence on the predictions, whereas nuke attack models demonstrated limited efficacy.

Shilling Attacks Against Memory-Based Privacy-Preserving Recommendation Algorithms

  • Gunes, Ihsan;Bilge, Alper;Polat, Huseyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1272-1290
    • /
    • 2013
  • Privacy-preserving collaborative filtering schemes are becoming increasingly popular because they handle the information overload problem without jeopardizing privacy. However, they may be susceptible to shilling or profile injection attacks, similar to traditional recommender systems without privacy measures. Although researchers have proposed various privacy-preserving recommendation frameworks, it has not been shown that such schemes are resistant to profile injection attacks. In this study, we investigate two memory-based privacy-preserving collaborative filtering algorithms and analyze their robustness against several shilling attack strategies. We first design and apply formerly proposed shilling attack techniques to privately collected databases. We analyze their effectiveness in manipulating predicted recommendations by experimenting on real data-based benchmark data sets. We show that it is still possible to manipulate the predictions significantly on databases consisting of masked preferences even though a few of the attack strategies are not effective in a privacy-preserving environment.

Semantics-aware Obfuscation for Location Privacy

  • Damiani, Maria Luisa;Silvestri, Claudio;Bertino, Elisa
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-160
    • /
    • 2008
  • The increasing availability of personal location data pushed by the widespread use of location-sensing technologies raises concerns with respect to the safeguard of location privacy. To address such concerns location privacy-preserving techniques are being investigated. An important area of application for such techniques is represented by Location Based Services (LBS). Many privacy-preserving techniques designed for LBS are based on the idea of forwarding to the LBS provider obfuscated locations, namely position information at low spatial resolution, in place of actual users' positions. Obfuscation techniques are generally based on the use of geometric methods. In this paper, we argue that such methods can lead to the disclosure of sensitive location information and thus to privacy leaks. We thus propose a novel method which takes into account the semantic context in which users are located. The original contribution of the paper is the introduction of a comprehensive framework consisting of a semantic-aware obfuscation model, a novel algorithm for the generation of obfuscated spaces for which we report results from an experimental evaluation and reference architecture.

An Analysis of Privacy and Accuracy for Privacy-Preserving Techniques by Matrix-based Randomization (행렬 기반 랜덤화를 적용한 프라이버시 보호 기술의 안전성 및 정확성 분석)

  • Kang, Ju-Sung;An, A-Ron;Hong, Do-Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.4
    • /
    • pp.53-68
    • /
    • 2008
  • We study on the practical privacy-preserving techniques by matrix-based randomization approach. We clearly examine the relationship between the two parameters associated with the measure of privacy breach and the condition number of matrix in order to achieve the optimal transition matrix. We propose a simple formula for efficiently calculating the inverse of transition matrix which are needed in the re-construction process of random substitution algorithm, and deduce some useful connections among standard error and another parameters by obtaining condition numbers according to norms of matrix and the expectation and variance of the transformed data. Moreover we give some experimental results about our theoretical expressions by implementing random substitution algorithm.

Privacy-Preserving DNA Matching Protocol (프라이버시를 보호하는 DNA 매칭 프로토콜)

  • Noh, Geontae
    • Journal of Internet Computing and Services
    • /
    • v.19 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • Due to advances in DNA sequencing technologies, its medical value continues to grow. However, once genome data leaked, it cannot be revoked, and disclosure of personal genome information impacts a large group of individuals. Therefore, secure techniques for managing genomic big data should be developed. We first propose a privacy-preserving inner product protocol for large data sets using the homomorphic encryption of Gentry et al., and then we introduce an efficient privacy-preserving DNA matching protocol based on the proposed protocol. Our efficient protocol satisfies the requirements of correctness, confidentiality, and privacy.

Privacy-Preserving in the Context of Data Mining and Deep Learning

  • Altalhi, Amjaad;AL-Saedi, Maram;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.137-142
    • /
    • 2021
  • Machine-learning systems have proven their worth in various industries, including healthcare and banking, by assisting in the extraction of valuable inferences. Information in these crucial sectors is traditionally stored in databases distributed across multiple environments, making accessing and extracting data from them a tough job. To this issue, we must add that these data sources contain sensitive information, implying that the data cannot be shared outside of the head. Using cryptographic techniques, Privacy-Preserving Machine Learning (PPML) helps solve this challenge, enabling information discovery while maintaining data privacy. In this paper, we talk about how to keep your data mining private. Because Data mining has a wide variety of uses, including business intelligence, medical diagnostic systems, image processing, web search, and scientific discoveries, and we discuss privacy-preserving in deep learning because deep learning (DL) exhibits exceptional exactitude in picture detection, Speech recognition, and natural language processing recognition as when compared to other fields of machine learning so that it detects the existence of any error that may occur to the data or access to systems and add data by unauthorized persons.

Deriving ratings from a private P2P collaborative scheme

  • Okkalioglu, Murat;Kaleli, Cihan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4463-4483
    • /
    • 2019
  • Privacy-preserving collaborative filtering schemes take privacy concerns into its primary consideration without neglecting the prediction accuracy. Different schemes are proposed that are built upon different data partitioning scenarios such as a central server, two-, multi-party or peer-to-peer network. These data partitioning scenarios have been investigated in terms of claimed privacy promises, recently. However, to the best of our knowledge, any peer-to-peer privacy-preserving scheme lacks such study that scrutinizes privacy promises. In this paper, we apply three different attack techniques by utilizing auxiliary information to derive private ratings of peers and conduct experiments by varying privacy protection parameters to evaluate to what extent peers' data can be reconstructed.

Differential Privacy Technology Resistant to the Model Inversion Attack in AI Environments (AI 환경에서 모델 전도 공격에 안전한 차분 프라이버시 기술)

  • Park, Cheollhee;Hong, Dowon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.589-598
    • /
    • 2019
  • The amount of digital data a is explosively growing, and these data have large potential values. Countries and companies are creating various added values from vast amounts of data, and are making a lot of investments in data analysis techniques. The privacy problem that occurs in data analysis is a major factor that hinders data utilization. Recently, as privacy violation attacks on neural network models have been proposed. researches on artificial neural network technology that preserves privacy is required. Therefore, various privacy preserving artificial neural network technologies have been studied in the field of differential privacy that ensures strict privacy. However, there are problems that the balance between the accuracy of the neural network model and the privacy budget is not appropriate. In this paper, we study differential privacy techniques that preserve the performance of a model within a given privacy budget and is resistant to model inversion attacks. Also, we analyze the resistance of model inversion attack according to privacy preservation strength.