• 제목/요약/키워드: privacy attacks

검색결과 229건 처리시간 0.025초

An Uncertain Graph Method Based on Node Random Response to Preserve Link Privacy of Social Networks

  • Jun Yan;Jiawang Chen;Yihui Zhou;Zhenqiang Wu;Laifeng Lu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권1호
    • /
    • pp.147-169
    • /
    • 2024
  • In pace with the development of network technology at lightning speed, social networks have been extensively applied in our lives. However, as social networks retain a large number of users' sensitive information, the openness of this information makes social networks vulnerable to attacks by malicious attackers. To preserve the link privacy of individuals in social networks, an uncertain graph method based on node random response is devised, which satisfies differential privacy while maintaining expected data utility. In this method, to achieve privacy preserving, the random response is applied on nodes to achieve edge modification on an original graph and node differential privacy is introduced to inject uncertainty on the edges. Simultaneously, to keep data utility, a divide and conquer strategy is adopted to decompose the original graph into many sub-graphs and each sub-graph is dealt with separately. In particular, only some larger sub-graphs selected by the exponent mechanism are modified, which further reduces the perturbation to the original graph. The presented method is proven to satisfy differential privacy. The performances of experiments demonstrate that this uncertain graph method can effectively provide a strict privacy guarantee and maintain data utility.

Analyses of Security, Privacy Issues and Challenges for RFID System

  • Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • 제9권6호
    • /
    • pp.701-705
    • /
    • 2011
  • RFID is a widely adopted in the field of identification technology these days. Radio Frequency IDentification (RFID) has wide applications in many areas including manufacturing, healthcare, and transportation. Because limited resource RFID tags are used, various risks could threaten their abilities to provide essential services to users. A number of RFID protocols have done by researcher in order to protect against some malicious attacks and threat. Existing RFID protocols are able to resolve a number of security and privacy issues, but still unable to overcome other security & privacy related issues. In this paper, we analyses security schemes and vulnerability in RFID application. Considering this RFID security issues, we survey the security threats and open problems related to issues by means of information security and privacy. Neither a symmetric nor an asymmetric cryptographic deployment is necessarily used with light weighted algorithm in the future.

Light-weight Preservation of Access Pattern Privacy in Un-trusted Storage

  • Yang, Ka;Zhang, Jinsheng;Zhang, Wensheng;Qiao, Daji
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제2권5호
    • /
    • pp.282-296
    • /
    • 2013
  • With the emergence of cloud computing, more and more sensitive user data are outsourced to remote storage servers. The privacy of users' access pattern to the data should be protected to prevent un-trusted storage servers from inferring users' private information or launching stealthy attacks. Meanwhile, the privacy protection schemes should be efficient as cloud users often use thin client devices to access the data. In this paper, we propose a lightweight scheme to protect the privacy of data access pattern. Comparing with existing state-of-the-art solutions, our scheme incurs less communication and computational overhead, requires significantly less storage space at the user side, while consuming similar storage space at the server. Rigorous proofs and extensive evaluations have been conducted to show that the proposed scheme can hide the data access pattern effectively in the long run after a reasonable number of accesses have been made.

  • PDF

Privacy-Preserving NFC-Based Authentication Protocol for Mobile Payment System

  • Ali M. Allam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권5호
    • /
    • pp.1471-1483
    • /
    • 2023
  • One of the fastest-growing mobile services accessible today is mobile payments. For the safety of this service, the Near Field Communication (NFC) technology is used. However, NFC standard protocol has prioritized transmission rate over authentication feature due to the proximity of communicated devices. Unfortunately, an adversary can exploit this vulnerability with an antenna that can eavesdrop or alter the exchanged messages between NFC-enabled devices. Many researchers have proposed authentication methods for NFC connections to mitigate this challenge. However, the security and privacy of payment transactions remain insufficient. We offer a privacy-preserving, anonymity-based, safe, and efficient authentication protocol to protect users from tracking and replay attacks to guarantee secure transactions. To improve transaction security and, more importantly, to make our protocol lightweight while ensuring privacy, the proposed protocol employs a secure offline session key generation mechanism. Formal security verification is performed to assess the proposed protocol's security strength. When comparing the performance of current protocols, the suggested protocol outperforms the others.

RSA에 사용된 파라메터들에 관한 고찰

  • 이희정
    • 한국수학사학회지
    • /
    • 제16권3호
    • /
    • pp.101-108
    • /
    • 2003
  • The RSA cryptosystem is most commonly used for providing privacy and ensuring authenticity of digital data. 1'his system is based on the difficulty of integer factoring. Many attacks had been done, but none of them devastating. They mostly illustrate the dangers of improper use of RSA. Improper use implies many aspects, but here we imply the misuse of the parameters of RSA. Specially, sizes of parameters give strong effects on the efficiency and the security of the system. Parameters are also related each other. We analyze the relation of them. Recently many researchers are interested in side-channel attacks. We also investigate partial key exposure attacks, which was motivated by side-channel attacks. If a fraction of tile secret key bits is revealed, the private key will be reconstructed. We also study mathematical background of these attacks, solving modular multivariate polynomial equations.

  • PDF

Cloud Storage Security Deduplication Scheme Based on Dynamic Bloom Filter

  • Yan, Xi-ai;Shi, Wei-qi;Tian, Hua
    • Journal of Information Processing Systems
    • /
    • 제15권6호
    • /
    • pp.1265-1276
    • /
    • 2019
  • Data deduplication is a common method to improve cloud storage efficiency and save network communication bandwidth, but it also brings a series of problems such as privacy disclosure and dictionary attacks. This paper proposes a secure deduplication scheme for cloud storage based on Bloom filter, and dynamically extends the standard Bloom filter. A public dynamic Bloom filter array (PDBFA) is constructed, which improves the efficiency of ownership proof, realizes the fast detection of duplicate data blocks and reduces the false positive rate of the system. In addition, in the process of file encryption and upload, the convergent key is encrypted twice, which can effectively prevent violent dictionary attacks. The experimental results show that the PDBFA scheme has the characteristics of low computational overhead and low false positive rate.

Recent Trends on Smart City Security: A Comprehensive Overview

  • Hyuk-Jun, Kwon;Mikail Mohammed, Salim;Jong Hyuk, Park
    • Journal of Information Processing Systems
    • /
    • 제19권1호
    • /
    • pp.118-129
    • /
    • 2023
  • The expansion of smart cities drives the growth of data generated from sensor devices, benefitting citizens with enhanced governance, intelligent decision-making, optimized and sustainable management of available resources. The exposure of user data during its collection from sensors, storage in databases, and processing by artificial intelligence-based solutions presents significant security and privacy challenges. In this paper, we investigate the various threats and attacks affecting the growth of future smart cities and discuss the available countermeasures using artificial intelligence and blockchain-based solutions. Open challenges in existing literature due to the lack of countermeasures against quantum-inspired attacks are discussed, focusing on postquantum security solutions for resource-constrained sensor devices. Additionally, we discuss future research and challenges for the growing smart city environment and suggest possible solutions.

IoT 환경에서 안전한 통신을 위한 세션 키 기반 접근 제어 기법의 설계 및 평가 (Design and Estimation of a Session Key based Access Control Scheme for Secure Communications in IoT Environments)

  • 진병욱;정동욱;차시호;전문석
    • 디지털산업정보학회논문지
    • /
    • 제12권1호
    • /
    • pp.35-41
    • /
    • 2016
  • Internet of Things (IoT) services are widely used in appliances of daily life and industries. IoT services also provide various conveniences to users and are expected to affect value added of all industries and national competitiveness. However, a variety of security threats are increased in IoT environments and lowers reliability of IoT devices and services that make some obstacles for commercialization. The attacks arising in IoT environments are making industrial and normal life accidents unlike existing information leak and monetary damages, and can expand damage scale of leakage of personal information and privacy more than existing them. To solve these problems, we design a session key based access control scheme for secure communications in IoT environments. The proposed scheme reinforces message security by generating session key between device and access control network system. We analyzed the stability of the proposed access scheme in terms of data forgery and corruption, unauthorized access, information disclosure, privacy violations, and denial of service attacks. And we also evaluated the proposed scheme in terms of permission settings, privacy indemnity, data confidentiality and integrity, authentication, and access control.

PEC: A Privacy-Preserving Emergency Call Scheme for Mobile Healthcare Social Networks

  • Liang, Xiaohui;Lu, Rongxing;Chen, Le;Lin, Xiaodong;Shen, Xuemin (Sherman)
    • Journal of Communications and Networks
    • /
    • 제13권2호
    • /
    • pp.102-112
    • /
    • 2011
  • In this paper, we propose a privacy-preserving emergency call scheme, called PEC, enabling patients in life-threatening emergencies to fast and accurately transmit emergency data to the nearby helpers via mobile healthcare social networks (MHSNs). Once an emergency happens, the personal digital assistant (PDA) of the patient runs the PEC to collect the emergency data including emergency location, patient health record, as well as patient physiological condition. The PEC then generates an emergency call with the emergency data inside and epidemically disseminates it to every user in the patient's neighborhood. If a physician happens to be nearby, the PEC ensures the time used to notify the physician of the emergency is the shortest. We show via theoretical analysis that the PEC is able to provide fine-grained access control on the emergency data, where the access policy is set by patients themselves. Moreover, the PEC can withstandmultiple types of attacks, such as identity theft attack, forgery attack, and collusion attack. We also devise an effective revocation mechanism to make the revocable PEC (rPEC) resistant to inside attacks. In addition, we demonstrate via simulation that the PEC can significantly reduce the response time of emergency care in MHSNs.

A Comprehensive Analyses of Intrusion Detection System for IoT Environment

  • Sicato, Jose Costa Sapalo;Singh, Sushil Kumar;Rathore, Shailendra;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.975-990
    • /
    • 2020
  • Nowadays, the Internet of Things (IoT) network, is increasingly becoming a ubiquitous connectivity between different advanced applications such as smart cities, smart homes, smart grids, and many others. The emerging network of smart devices and objects enables people to make smart decisions through machine to machine (M2M) communication. Most real-world security and IoT-related challenges are vulnerable to various attacks that pose numerous security and privacy challenges. Therefore, IoT offers efficient and effective solutions. intrusion detection system (IDS) is a solution to address security and privacy challenges with detecting different IoT attacks. To develop an attack detection and a stable network, this paper's main objective is to provide a comprehensive overview of existing intrusion detections system for IoT environment, cyber-security threats challenges, and transparent problems and concerns are analyzed and discussed. In this paper, we propose software-defined IDS based distributed cloud architecture, that provides a secure IoT environment. Experimental evaluation of proposed architecture shows that it has better detection and accuracy than traditional methods.