• Title/Summary/Keyword: prior 모델

Search Result 582, Processing Time 0.022 seconds

빅데이터 표준분석모델을 활용한 CCTV우선 설치지역 도출 사례연구 (The Case Study of CCTV Priority Installation Using BigData Standard Analysis Model)

  • 성창수;박주연;가회광
    • 디지털융복합연구
    • /
    • 제15권5호
    • /
    • pp.61-69
    • /
    • 2017
  • 본 논문에서는 공공기관의 빅데이터를 활용한 표준분석모델을 살펴보고, 실제 사례현장의 분석결과를 통해 빅데이터 표준분석모델의 적합성과 효과성을 확인하고자 한다. 특히 행정효율성을 향상시킬 수 있는 분야인 민원, CCTV 등의 빅데이터에 대한 표준분석모델을 대상으로 하였다. 이를 위해 빅데이터 표준분석 지표를 산출하고 K시의 CCTV우선설치지역 사례에 적용하여 빅데이터 표준분석모델의 정확성을 조사하였다. 빅데이터 표준분석 모델을 활용한 K시의 사례분석 결과, 우선 설치리스트 상위 지점 모두 범죄취약지수 중 환경지수 값이 전반적으로 낮게 나온 반면, CCTV미설치 지역에 따른 감시취약지수와 야간 및 심야 시간대의 유동인구 지수가 높게 나타났다. 이는 실제로 CCTV설치에 대한 민원이 높고 그 필요성을 인지하고 있는 지역으로 빅 데이터 분석결과가 높은 정확성을 나타내고 있음을 확인할 수 있다. 이러한 연구결과는 빅데이터 활용과 분석에 의한 행정 효율성의 제고 및 디지털 융합 환경에서 빅데이터 표준분석 모델의 의미있는 시사점을 제시하고 있다.

도메인 적응 기술을 이용한 한국어 의미역 인식 (Korean Semantic Role Labeling Using Domain Adaptation Technique)

  • 임수종;배용진;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.56-60
    • /
    • 2014
  • 기계학습 방법에 기반한 자연어 분석은 학습 데이터가 필요하다. 학습 데이터가 구축된 소스 도메인이 아닌 다른 도메인에 적용할 경우 한국어 의미역 인식 기술은 15% 정도 성능 하락이 발생한다. 본 논문은 이러한 다른 도메인에 적용시 발생하는 성능 하락 현상을 극복하기 위해서 기존의 소스 도메인 학습 데이터를 활용하여, 소규모의 타겟 도메인 학습 데이터 구축만으로도 성능 하락을 최소화하기 위해 한국어 의미역 인식 기술에 prior 모델을 제안하며 기존의 도메인 적응 알고리즘과 비교 실험하였다. 추가적으로 학습 데이터에 사용되는 자질 중에서, 형태소 태그와 구문 태그의 자질 값을 기존보다 단순하게 적용하여 성능의 변화를 실험하였다.

  • PDF

도메인 적응 기술 기반 질문 문장에 대한 의미역 인식 연구 (A Study of Semantic Role Labeling using Domain Adaptation Technique for Question)

  • 임수종;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.246-249
    • /
    • 2015
  • 기계학습 방법에 기반한 자연어 분석은 학습 데이터가 필요하다. 학습 데이터가 구축된 소스 도메인이 아닌 다른 도메인에 적용할 경우 한국어 의미역 인식 기술은 10% 정도 성능 하락이 발생한다. 본 논문은 기존 도메인 적응 기술을 이용하여 도메인이 다르고, 문장의 형태도 다를 경우에 도메인 적응 알고리즘을 적용하여, 질의응답 시스템에서 필요한 질문 문장 의미역 인식을 위해, 소규모의 질문 문장에 대한 학습 데이터 구축만으로도 한국어 질문 문장에 대해 성능을 향상시키기 위한 방법을 제안한다. 한국어 의미역 인식 기술에 prior 모델을 제안한다. 제안하는 방법은 실험결과 소스 도메인 데이터만 사용한 실험보다 9.42, 소스와 타겟 도메인 데이터를 단순 합하여 학습한 경우보다 2.64의 성능향상을 보였다.

  • PDF

사전 정보를 이용한 소프트웨어 개발노력 추정 신경망 구조 결정 (Decision of Neural Network Architecture for Software Development Effort Estimation using Prior Information)

  • 박석규;유창열;박영목
    • 한국컴퓨터산업학회논문지
    • /
    • 제2권9호
    • /
    • pp.1191-1198
    • /
    • 2001
  • 소프트웨어 개발에서 점점 더 중요시되는 사항은 개발 생명주기의 초기에 개발과 관련된 노력과 비용을 추정하는 능력이다. 제안된 모델 대부분은 경험 데이터의 직관, 전문가 판단과 회귀분석의 조합에 기반을 두고 있으나 다양한 환경에 적용될 수 있는 하나의 모델을 개발하는 것이 불가능하였다. 본 논문은 기능 구성요소 형태들로 측정된 소프트웨어 규모로 소프트웨어 개발노력을 추정하는 신경망 모델을 제안한다. 신경망의 은닉뉴런 수는 입-출력 관계로부터 휴리스틱하게 얻는 방법을 제안한다. 24개 소프트웨어 개발 프로젝트 사례연구를 통해 적합한 신경망 모델을 제시하였다. 또한, 회귀분석 모델과 신경망 모델을 비교하여 신경망 모델의 정확성이 보다 좋음을 보였다.

  • PDF

베이스 경신법을 활용한 구조물 안전성평가 개선 (Improvement in Safety Evaluation of Structures using the Bayesian Updating Approach)

  • 박기동;이상복;김준기;나창순
    • 한국전산구조공학회논문집
    • /
    • 제29권2호
    • /
    • pp.115-122
    • /
    • 2016
  • 기존 건축물의 구조 안전성평가와 보수 보강 시에는 해당 건축물의 상태를 정확히 알기 위해 현장 또는 실험실에서의 실험을 수행하는 경우가 많고 최초설계 단계와 다르게 시공된 건축물의 실제 상태 등을 구조해석 모델에 반영하게 된다. 이 경우, 각종 실험값을 전통적인 통계학적 방법은 구조기술자가 지닌 경험과 지식은 구조모델링 및 해석에서 아무런 가치를 더 할 수가 없다. 본 논문은 현장 및 실험실에서 얻은 단순한 실험값을 구조기술자의 축적된 경험과 지식을 변수로 활용하여 보다 유효하게 구조해석 모델에 필요한 데이터로 개선하는 방법으로서 통계학적인 베이스 경신법을 이용한 안전성평가 방법에 대해 살펴보았다. 구조기술자의 적절한 판단이 변수로서 포함되면 적은 개수의 샘플 수로도 비교적 정확한 값의 최종 예측값을 산정할 수 있어 전통적인 통계학적 접근에 비해 보다 실제값에 근접한 예측값을 구할 수 있는 것을 확인하였다.

특허출원교육시스템의 사용자 수용관계에 관한 연구: 사전지식의 조절효과 중심 (A Study on User Acceptance of Patent Application Education System: Focused on the Effect of Prior Knowledge)

  • 박재성
    • 디지털융복합연구
    • /
    • 제16권3호
    • /
    • pp.75-85
    • /
    • 2018
  • 본 연구는 특허출원교육 프로그램의 효과적인 진행을 위해 개발된 PatentNOW의 대학생들의 수용과정을 기술수용모델과 사전지식이론을 바탕으로 접근하였다. 연구결과, 첫째 지각된 사용용이성은 지각된 유용성에 긍정적 영향을 주었다. 둘째 지각된 유용성과 지각된 사용용이성은 사용태도에 긍정적 영향을 주었고 사용태도 역시 사용의도에 긍정적인 영향을 주었다. 셋째 PatentNOW 사용자들이 갖는 특허제도에 대한 사전지식 수준과 특허출원 경험은 지각된 사용용이성과 사용태도와의 관계에 있어 약화시키는 조절효과가 있는 것으로 나타났다. 이러한 연구결과는 특허출원교육의 질적 향상을 위해서 교육생들의 사전지식 수준에 따른 PatentNOW의 활용 교수법이 차별적으로 개발되어야 함을 시사하고 있다.

실시간 감시 시스템을 위한 사전 무학습 능동 특징점 모델 기반 객체 추적 (Non-Prior Training Active Feature Model-Based Object Tracking for Real-Time Surveillance Systems)

  • 김상진;신정호;이성원;백준기
    • 대한전자공학회논문지SP
    • /
    • 제41권5호
    • /
    • pp.23-34
    • /
    • 2004
  • 본 논문에서는 사전학습이 필요 없는 능동 특징점 모델(non-prior training active feature model; NPT AFM) 기반에서 광류(optical flow)를 이용한 객체추적 기술을 제안한다. 제안한 알고리듬은 비정형 객체에 대한 분석[1]에 초점을 두고 있으며, 실시간에서 NPT-AFM을 사용한 강건한 추적을 가능하게 한다. NPT-AFM 알고리듬은 관심 객체의 위치를 파악하는 과정 (localization)과 이전 프레임 정보와 현재 프레임 정보를 이용하여, 객체의 위치를 예측(prediction), 보정(correction)하는 과정으로 나눌 수 있다 위치 파악 과정에서는 움직임 분할(motion segmentation)을 수행한 후 개선된 Shi-Tomasi의 특징점 추적 알고리듬[2]을 사용 하였다. 예측 및 보정 과정에서는 광류 정보를 사용하여 특징점을 추적하고[3] 만약, 특징점이 적절히 추적 되지 않거나 추적에 실패하면 특징점들의 시간(temporal), 공간(spatial)적 정보를 이용하여 예측, 보정하게 된다. 객체의 형태 (shape)대신 특징점을 사용하였으며, 객체를 추적하는 과정에서 특징점들은 능동 특징점 모델(active feature model; AFM)을 위한 학습 집합(training sets)의 요소로 갱신된다. 실험결과, 제안한 NPT-AF% 기반 추적 알고리듬은 실시간에서 비정형 객체를 추적하는데 강건함을 보석준다.

화자공간모델 진화에 근거한 연속밀도 은닉 마코프모델의 온라인 적응 (Online Adaptation of Continuous Density Hidden Markov Models Based on Speaker Space Model Evolution)

  • 김동국;김영준;김현우;김남수
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.69-72
    • /
    • 2002
  • 본 논문에서 화자공간모델 evolution에 기반한 continuous density hidden Markov model (CDHMM)의 online 적응에 대한 새로운 기법을 제안한다. 학습화자의 a priori knowledge을 나타내는 화자공간모델은 factor analysis (FA) 또는 probabilistic principal component analysis (PPCA)와 같은 은닉변수모델(latent variable model)에 의해 효과적으로 나타내어진다. 은닉 변수모델은 화자공간모델뿐아니라 CDHMM 파라메터의 ajoint prior분포를 표시함으로, maximum a posteriori(MAP)적응기법에 직접 적용되어진다. 화자공간모델의 hyperparameters와 CDHMM파라메터를 동시에 순차적으로 적응하기 위해 quasi-Bayes (QB)추정 기술에 기반한 online 적응기법을 제안한다. 연속숫자음 인식과 관련된 화자적응 실험을 통해 제안된 기법은 적은 적응데이터에서 좋은 성능을 나타내며, 데이터가 증가함에 따라 성능이 지속적으로 증가함을 보여준다.

  • PDF

어레이 안테나와 결합된 신경망모델에 의한 실시간 도래방향 추정 알고리즘에 관한 연구 (Real Time AOA Estimation Using Neural Network combined with Array Antennas)

  • 정중식;임정빈;안영섭
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2003년도 춘계공동학술대회논문집
    • /
    • pp.87-91
    • /
    • 2003
  • 레이다 신호처리를 포함하여 무선통신시스템의 성능향상을 위한 수신신호의 도래방향 추정기술 중 MUSIC과 ESPRIT와 같은 방법들은 수신신호 벡터로부터 얻어진 상관행렬의 고유치 분해론 통하여 도래방향을 정도 높게 추정할 수 있는 초고분해 알고리즘들로 잘 이용되어 왔다 그러나, 이러한 방법들은 계산적인 복잡성으로 인하여 실시간 처리에 장애가 되어 왔으며, 어레이 안테나의 물리적인 결함에 대한 보정을 요구한다. 이에 대한 해결방법으로서 신경망 모델을 이용한 도래방향 추정방법들이 연구되어 왔으나, 복수의 신호가 존재할 경우 신경망 모델에 대한 대규모 학습량을 요구하고, 실시간 처리가능성에 대한 명확한 해론 제공하지 못한다. 본 연구에서는 상호결합형 신경망 모델을 이용하여 도래방향을 추정하기 위한 방법을 제안하고, 컴퓨터 시뮬레이션을 통하여 실시간 처리가능성을 논한다. 제안된 방법은 대규모 학습을 요구하지 않는다. 즉, 도래방향을 추정하기 전에 상호결합계수를 신경망에 할당할 뿐이다.

  • PDF

아날로그 신경망 모델을 이용한 실시간 도래방향 추정 알고리즘의 개발 (Real Time AOA Estimation Using Analog Neural Network Model)

  • 정중식
    • 한국항해항만학회지
    • /
    • 제27권4호
    • /
    • pp.465-469
    • /
    • 2003
  • 레이더 신호처리론 포함하여 무선통신 시스템의 성능향상을 위한 수신신호의 도래방향 추정기술 중, MUSIC과 ESPRIT와 같은 방법들은 수신신호 벡터로부터 얻어진 상관행렬의 고유치 분해를 통하여 도래방향을 정도 높게 추정할 수 있는 초고분해 알고리즘들로 잘 이용되어 왔다. 그러나, 이러한 방법들은 계산의 복잡성으로 인하여 실시간 처리에 장애가 되어 왔으며, 어레이 안테나의 물리적인 결함에 대한 보정을 요구한다. 이에 대한 해결방법으로서 신경망 모델을 이용한 도래방향 추정방법들이 연구되어 왔으나, 복수의 신호가 존재할 경우 신경망 모델에 대한 대규모 학습량을 요구하고, 실시간 처리가능성에 대한 명확한 해를 제공하지 못한다. 본 연구에서는 상호결합형 신경망 모델을 이용하여 도래방향을 추정하기 위한 방법을 제안하고, 컴퓨터 시뮬레이션을 통하여 실시간 처리가능성을 보여주었으며, 제안된 방법이 MUSIC 보다 더 좋은 추정치를 제공한다. 게다가, 제안된 방법은 대규모 학습을 요구하지 않는다. 즉, 도래방향을 추정하기 전에 상호결합계수를 신경망에 할당할 뿐이다.