• Title/Summary/Keyword: printable devices

Search Result 27, Processing Time 0.025 seconds

Printable low work function cathode for OLED devices

  • Maaninen, Tiina;Tuomikoski, Markus;Maaninen, Arto
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.721-723
    • /
    • 2007
  • Commercial conductive metal inks are available, but metals used in these have unsuitable work function for efficient OLED device performance. Metals with low work function tend to oxidize easily, which makes it challenging to develop low work function metal inks. In this research we describe printed low work function Al cathode.

  • PDF

The role of functional materials and inkjet printing technology for printable electronics (프린팅 전자소자용 잉크젯 기술과 소재)

  • Ryu, Beyong-Hwan;Choi, Young-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.446-450
    • /
    • 2007
  • It is strongly expected that inkjet printing method will be play and important role on printable electronics such as 3D integration of embedded ceramic devices(capacitor, resistor, inductor and electrode or circuit), Si-TFT and organic TFT including display C/F, RFID, FPCB, and etc. A inkjet printing method had been center of attention to strengthen the competitiveness of flat panel display on market and to open the new world of manufacturing process of printable electronics. We will survey the industrial tendency of printable electronics and flat panel display including some examples of inkjet printing and present the considerable points of inkjet printing method and some role of materials for successful inkjet printing.

  • PDF

Electrolyte-gated Transistors for the Next-generation Smart Electronics (차세대 스마트 전자를 위한 전기화학 트랜지스터)

  • Kwon, Hyeok-jin;Kim, Se Hyun
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • In this report, we summarize recent progress in the development of electrolyte-gated transistors (EGTs) for various printed electronics. EGTs, employing a high capacitance electrolyte as gate dielectric layer in transistors, exhibits increasing of drive current, lowering operation voltage, and new transistor architectures. While the use of electrolytes in electronics goes back to the early days of silicon transistors, the new printable, fast-responsive polymer electrolytes are expanding their range of applications from printable and flexible digital circuits to various neuromorphic devices. This report introduces the structure and operating mechanism of EGT and reviews key developments in electrolyte materials used in printed electronics. Additionally, we will look at various applications with EGTs that are currently underway.

Inorganic Printable Materials for Printed Electronics: TFT and Photovoltaic Application

  • Jeong, Seon-Ho;Lee, Byeong-Seok;Lee, Ji-Yun;Seo, Yeong-Hui;Kim, Ye-Na;More, Priyesh V.;Lee, Jae-Su;Jo, Ye-Jin;Choe, Yeong-Min;Ryu, Byeong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.1.1-1.1
    • /
    • 2011
  • Printed electronics based on the direct writing of solution processable functional materials have been of paramount interest and importance. In this talk, the synthesis of printable inorganic functional materials (conductors and semiconductors) for thin-film transistors (TFTs) and photovoltaic devices, device fabrication based on a printing technique, and specific characteristics of devices are presented. For printable conductor materials, Ag ink is designed to achieve the long-term dispersion stability and good adhesion property on a glass substrate, and Cu ink is sophisticatedly formulated to endow the oxidation stability in air and even aqueous solvent system. The both inks were successfully printed onto either polymer or glass substrate, exhibiting the superior conductivity comparable to that of bulk one. In addition, the organic thin-film transistor based on the printed metal source/drain electrode exhibits the electrical performance comparable to that of a transistor based on a vacuum deposited Au electrode. For printable amorphous oxide semiconductors (AOSs), I introduce the noble ways to resolve the critical problems, a high processing temperature above $400^{\circ}C$ and low mobility of AOSs annealed at a low temperature below $400^{\circ}C$. The dependency of TFT performances on the chemical structure of AOSs is compared and contrasted to clarify which factor should be considered to realize the low temperature annealed, high performance AOSs. For photovoltaic application, CI(G)S nanoparticle ink for solution processable high performance solar cells is presented. By overcoming the critical drawbacks of conventional solution processed CI(G)S absorber layers, the device quality dense CI(G)S layer is obtained, affording 7.3% efficiency CI(G)S photovoltaic device.

  • PDF

Direct route to high yield synthesis of metal nanoparticles for printable electronic devices

  • Kim, Dong-Hun;Lee, Gwi-Jong;Lee, Yeong-Il;Jeon, Byeong-Ho;Choe, Jun-Rak;Seo, Yeong-Gwan;Kim, Tae-Hun;Gang, Seong-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.14.1-14.1
    • /
    • 2009
  • We found a high yield synthetic route to organic-soluble metal nanoparticles in the concentrated organic phase. The organic phase contains metal salt, amines, fatty acids, nonpolar solvent, and reducing agent. Even using only generic chemicals, organic-soluble silver and copper nanoparticles could be easily obtained by this simple and rapid reaction scheme at large scale. The hydrocarbon-protected metal nanoparticles showed excellent dispersion properties and were successfully printed onto polymer substrates. The printed pattern was heated at $200^{\circ}C$, which showed very low specific electrical resistance (< 10 uOhm$\cdot$cm), sufficient for conducting line of various printable devices.

  • PDF

Study on Printing Roll Manufacturing by using 3 Dimensional Laser Scanner (3차원 레이저 스캐너를 이용한 인쇄롤 가공에 관한 연구)

  • Kang, Heeshin;Noh, Jiwhan;Sohn, Hyonkee
    • Laser Solutions
    • /
    • v.16 no.4
    • /
    • pp.17-23
    • /
    • 2013
  • The research for the development of roll-to-roll printing process is actively underway on behalf of the existing semiconductor process. The roll-to-roll printing system can make the electronic devices to low-cost mass production. This study is performed for developing the manufacturing technology of the printing roll used in the printing process of electronic devices. The indirect laser engraving technology is used to create printable roll and the printable roll is made out of the chrome coated roll after coating copper and polymer on the surface of steel roll, ablating the polymer on the surface of roll and etching the roll. The 3 dimensional laser scanner and roll rotating systems are constructed and the system control program is developed. We have used the fiber laser of 100 W grade, the 3 dimensional laser scanner and the 3 axes moving stage system with a rotating axis. We have found the optimal conditions by performing the laser patterning experiments and can make the minimum line width of $24{\mu}m$ by using the developed 3 dimensional laser scanner system.

  • PDF

Study on Indirect Laser Patterning for Manufacturing the Printing Roll (인쇄용 롤 제작을 위한 간접식 레이저 패터닝에 관한 연구)

  • Kang, Heeshin;Noh, Jiwhan;Suh, Jeong
    • Laser Solutions
    • /
    • v.15 no.4
    • /
    • pp.12-15
    • /
    • 2012
  • On behalf of the existing semiconductor process, the electronic devices to low-cost mass production to mass print the way, the research for development of roll-to-roll printing process is actively underway. This study was performed in about the research on the manufacturing technology of the printing roll used in the printing process of electronic devices. The indirect laser imprinting technology was used to create printable roll, and after coating copper on the surface of steel and thereon after coating polymer, after removing the polymer on the surface of roll, the printable roll was made. The laser system and roll feeder system were constructed and control program was developed. We has found the optimal conditions to perform laser patterning experiments using a system developed and We can make the minimum line width of 18 ${\mu}m$.

  • PDF

Recent Trends in Development of Ag Nanowire-based Transparent Electrodes for Flexible·Stretchable Electronics (유연·신축성 전자 소자 개발을 위한 은 나노와이어 기반 투명전극 기술)

  • Kim, Dae-Gon;Kim, Youngmin;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • Recently, advances in nano-material researches have opened the door for various transparent conductive materials, which include carbon nanotube, graphene, Ag and Cu nanowire, and printable metal grids. Among them, Ag nanowires are particularly interesting to synthesize because bulk Ag exhibits the highest electrical conductivity among all metals. Here we reviewed recently-published research works introducing various devices from organic light emitting diode to tactile sensing devices, all of which are employing AgNW for a conducting material. They proposed methods to enhance the stretchability and reversibility of the transparent electrodes, and apply them to make various flexible and stretchable electronics. It is expected that Ag nanowires are applicable to a wide range of high-performance, low-cost, stretchable electronic devices.

The Role of MMA and EGDMA in Enhancing the Mechanical Properties of PMMA Composites (PMMA 복합재의 기계적 특성 향상을 위한 MMA 및 EGDMA의 역할 연구)

  • Aqila Che Ab Rahman;Shiyoung Yang;Sooman lim
    • Journal of Integrative Natural Science
    • /
    • v.17 no.2
    • /
    • pp.53-58
    • /
    • 2024
  • This study explores the enhancement of mechanical properties in Polymethyl Methacrylate (PMMA) composites through the incorporation of Methyl Methacrylate (MMA) and Ethylene Glycol Dimethacrylate (EGDMA). Utilizing Digital Light Processing (DLP) technology, we conducted a series of experiments to analyze the impact of varying concentrations of MMA and EGDMA on PMMA. The results indicate that while MMA demonstrates non-linear and variable mechanical strength across different PMMA concentrations, EGDMA consistently improves mechanical strength as PMMA concentration increases. This consistent enhancement by EGDMA suggests a stable and predictable reinforcement effect, which is critical for applications requiring high mechanical strength. Our comparative analysis highlights that EGDMA is a more effective additive than MMA for optimizing the mechanical performance of PMMA composites. Specifically, EGDMA's ability to provide uniform reinforcement across various PMMA concentrations makes it ideal for high-strength applications. These findings are significant for material scientists and engineers focused on the design and development of advanced PMMA-based materials. In conclusion, this research underscores the importance of selecting appropriate additives to enhance the mechanical properties of PMMA composites. The superior performance of EGDMA in reinforcing PMMA suggests its potential for broader applications in fields such as automotive, construction, medical devices, and 3D printing. This study provides valuable insights that can guide future research and development in high-performance composite materials, paving the way for innovative applications and improved material efficiency.

Wireless Power Receiving System Implemented on a Flexible Substrate for Wearable Device Applications (웨어러블 기기 응용을 위한 플렉서블 무선 전력 수신 시스템)

  • Lee, Yongwan;Lim, Jongsik;Han, Sang-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.739-745
    • /
    • 2015
  • In this paper, a flexible wireless power receiving system is proposed for wearable device applications. The proposed system is designed with printable component configuration to be integrable to textile material. While the defected ground structures(DGSs) are utilized for planar printable filter designs, direct impedance matching technique is considered for flexible circuit performance. The proposed system has been implemented on a flexible substrate with a thickness of 5 mils, and experimented for power conversion efficiencies and converted voltages. In order to evaluate the hardware flexibility, the system performance are measured a bended circuit board at a radius of curvature of 5 cm. The system performance is analyzed for the degradation due to the curvature. The proposed system has shown the excellent capability of far-field wireless power transfer systems in flexible device environments.