• Title/Summary/Keyword: principle of virtual displacement

Search Result 99, Processing Time 0.019 seconds

A novel refined shear deformation theory for the buckling analysis of thick isotropic plates

  • Fellah, M.;Draiche, Kada;Houar, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Saeed, Tareq;Alhodaly, Mohammed Sh.;Benguediab, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.335-345
    • /
    • 2019
  • In present study, a novel refined hyperbolic shear deformation theory is proposed for the buckling analysis of thick isotropic plates. The new displacement field is constructed with only two unknowns, as against three or more in other higher order shear deformation theories. However, the hyperbolic sine function is assigned according to the shearing stress distribution across the plate thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using any shear correction factors. The equations of motion associated with the present theory are obtained using the principle of virtual work. The analytical solution of the buckling of simply supported plates subjected to uniaxial and biaxial loading conditions was obtained using the Navier method. The critical buckling load results for thick isotropic square plates are compared with various available results in the literature given by other theories. From the present analysis, it can be concluded that the proposed theory is accurate and efficient in predicting the buckling response of isotropic plates.

Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory

  • Draiche, Kada;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Alwabli, Afaf S.;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.369-378
    • /
    • 2019
  • This paper aims to present an analytical model to predict the static analysis of laminated reinforced composite plates subjected to sinusoidal and uniform loads by using a simple first-order shear deformation theory (SFSDT). The most important aspect of the present theory is that unlike the conventional FSDT, the proposed model contains only four unknown variables. This is due to the fact that the inplane displacement field is selected according to an undetermined integral component in order to reduce the number of unknowns. The governing differential equations are derived by employing the static version of principle of virtual work and solved by applying Navier's solution procedure. The non-dimensional displacements and stresses of simply supported antisymmetric cross-ply and angle-ply laminated plates are presented and compared with the exact 3D solutions and those computed using other plate theories to demonstrate the accuracy and efficiency of the present theory. It is found from these comparisons that the numerical results provided by the present model are in close agreement with those obtained by using the conventional FSDT.

Spatial Free Vibration and Stability Analysis of Thin-Walled Curved Beams with Variable Curvatures (곡률이 변하는 박벽 곡선보의 3차원 자유진동 및 좌굴해석)

  • 서광진;민병철;김문영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.321-328
    • /
    • 2000
  • An improved formulation of thin-wailed curved beams with variable curvatures based on displacement field considering the second order terms of finite semitangential rotations is presented. From linearized virtual work principle by Vlasov's assumptions, the total potential energy is derived and all displacement parameters and the warping functions are defined at cendtroid axis. In developing the thin-walled curved beam element having eight degrees of freedom per a node, the cubic Hermitian polynomials are used as shape functions. In order to verify the accuracy and practical usefulness of this study, free vibrations and buckling analyses of parabolic and elliptic arche shapes with mono-symmetric sections are carried out and compared with the results analyzed by ABAQUS' shell element.

  • PDF

Buckling analysis in hybrid cross-ply composite laminates on elastic foundation using the two variable refined plate theory

  • Benselama, Khadidja;El Meiche, Noureddine;Bedia, El Abbas Adda;Tounsi, Abdelwahed
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.47-64
    • /
    • 2015
  • This paper presents the effect of hybridization material on variation of critical buckling load with different cross-ply laminates plate resting on elastic foundations of Winkler and Pasternak types subjected to combine uniaxial and biaxial loading by using two variable refined plate theories. Governing equations are derived from the principle of virtual displacement; the formulation is based on a new trigonometric shape function of displacement taking into account transverse shear deformation effects vary parabolically across the thickness satisfying shear stress free surface conditions. These equations are solved analytically using the Navier solution of a simply supported. The influence of the various parameters geometric and material, the thickness ratio, and the number of layers symmetric and antisymmetric hybrid laminates material has been investigated to find the critical buckling loads. The numerical results obtained through the present study with several examples are presented to verify and compared with other models with the ones available in the literature.

Bending analysis of exponentially varied FG plates using trigonometric shear and normal deformation theory

  • Sunil S. Yadav;Keshav K. Sangle;Mandar U. Kokane;Sandeep S. Pendhari;Yuwaraj M. Ghugal
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.281-302
    • /
    • 2023
  • In this paper, bending analysis of exponentially varying functionally graded (FG) plate is presented using trigonometric shear deformation theory (TSDT) considering both transverse shear and normal deformation effects. The in-plane displacement field consists of sinusoidal functions in thickness direction to include transverse shear strains and transverse displacement include the effect of transverse normal strain using the cosine function in thickness coordinate. The governing equations and boundary conditions of the theory are derived using the virtual work principle. System of governing equations, for simply supported conditions, Navier's solution technique is used to obtain results. Plate material properties vary across thickness direction according to exponential distribution law. In the current theory, transverse shear stresses are distributed accurately through the plate thickness, hence obviates the need for a shear correction factor. TSDT results are compared with those from other theories to ensure the accuracy and effectiveness of the present theory. The current theory is in excellent agreement with the semi-analytical theory.

Free vibration analysis of large sag catenary with application to catenary jumper

  • Klaycham, Karun;Nguantud, Panisara;Athisakul, Chainarong;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.67-86
    • /
    • 2020
  • The main goal of this study is to investigate the free vibration analysis of a large sag catenary with application to the jumper in hybrid riser system. The equation of motion is derived by using the variational method based on the virtual work principle. The finite element method is applied to evaluate the numerical solutions. The large sag catenary is utilized as an initial configuration for vibration analysis. The nonlinearity due to the large sag curvature of static configuration is taken into account in the element stiffness matrix. The natural frequencies of large sag catenary and their corresponding mode shapes are determined by solving the eigenvalue problem. The numerical examples of a large sag catenary jumpers are presented. The influences of bending rigidity and large sag shape on the free vibration behaviors of the catenary jumper are provided. The results indicate that the increase in sag reduces the jumper natural frequencies. The corresponding mode shapes of the jumper with large sag catenary shape are comprised of normal and tangential displacements. The large sag curvature including in the element stiffness matrix increases the natural frequency especially for a case of very large sag shape. Mostly, the mode shapes of jumper are dominated by the normal displacement, however, the tangential displacement significantly occurs around the lowest point of sag. The increase in degree of inclination of the catenary tends to increase the natural frequencies.

An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates

  • Bellifa, Hichem;Bakora, Ahmed;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.257-270
    • /
    • 2017
  • In this article, an efficient and simple refined theory is proposed for buckling analysis of functionally graded plates by using a new displacement field which includes undetermined integral variables. This theory contains only four unknowns, with is even less than the first shear deformation theory (FSDT). Governing equations are obtained from the principle of virtual works. The closed-form solutions of rectangular plates are determined. Comparison studies are carried out to check the validity of obtained results. The influences of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are examined and discussed.

Bending analysis of thick functionally graded piezoelectric rectangular plates using higher-order shear and normal deformable plate theory

  • Dehsaraji, M. Lori;Saidi, A.R.;Mohammadi, M.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.259-269
    • /
    • 2020
  • In this paper, bending-stretching analysis of thick functionally graded piezoelectric rectangular plates is studied using the higher-order shear and normal deformable plate theory. On the basis of this theory, Legendre polynomials are used for approximating the components of displacement field. Also, the effects of both normal and shear deformations are encountered in the theory. The governing equations are derived using the principle of virtual work and variational approach. It is assumed that plate is made of piezoelectric materials with functionally graded distribution of material properties. Hence, exponential function is used to modify mechanical and electrical properties through the thickness of the plate. Finally, the effect of material properties, electrical boundary conditions and dimensions are investigated on the static response of plate. Also, it is shown that results of the presented model are close to the three dimensional elasticity solutions.

A novel four-unknown quasi-3D shear deformation theory for functionally graded plates

  • Hebbar, Nabil;Bourada, Mohamed;Sekkal, Mohamed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.599-611
    • /
    • 2018
  • In this article a four unknown quasi-3D shear deformation theory for the bending analysis of functionally graded (FG) plates is developed. The advantage of this theory is that, in addition to introducing the thickness stretching impact (${\varepsilon}_z{\neq}0$), the displacement field is modeled with only four variables, which is even less than the first order shear deformation theory (FSDT). The principle of virtual work is utilized to determine the governing equations. The obtained numerical results from the proposed theory are compared with the CPT, FSDT, and other quasi-3D HSDTs.

Vibration Analysis of the Moving Plates Subjected to the Force of Gravity

  • Jooyong Cho;Kim, Doyeon;Lee, Usik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.3-10
    • /
    • 2003
  • The use of frequency-dependent dynamic stiffness matrix (or spectral element matrix) in structural dynamics may provide very accurate solutions, while it reduces the number of degrees-of-freedom to improve the computational efficiency and cost problems. Thus, this paper develops a spectral element model for the thin plates moving with constant speed under uniform in-plane tension and gravity. The concept of Kantorovich method and the principle of virtual displacement is used in the frequency-domain to formulate the dynamic stiffness matrix. The present spectral element model is evaluated by comparing its solutions with the exact analytical solutions. The effects of moving speed, in-plane tension and gravity on the natural frequencies of the plate are numerically investigated.

  • PDF