References
- Askari Farsangi, M.A. and Saidi, A.R. (2012) "Levy type solution for free vibration analysis of functionally graded rectangular plates with piezoelectric layers", Smart Mater. Struct., 21, 1-15. https://doi.org/10.1088/0964-1726/21/9/094017.
- Batra, R.C. (2007) "Higher-order shear and normal deformable theory for functionally graded incompressible linear elastic plates", Thin-Wall. Struct., 45, 974-982. https://doi.org/10.1016/j.tws.2007.07.008.
- Batra, R. and Vidoli, S. (2002) "Higher order piezoelectric plate theory derived from a three-dimensional variational principle", AIAA J., 40, 91-104. https://doi.org/10.2514/2.1618.
- Behjat, B. and Khoshravan, M.R. (2012) "Geometrically nonlinear static and free vibration analysis of functionally graded piezoelectric plates", Compos. Struct., 94, 874-882. https://doi.org/10.1016/j.compstruct.2011.08.024.
- Behjat, B., Salehi, M., Armina, A., Sadighi, M. and Abbasi, M. (2011) "A static and dynamic analysis of functionally graded piezoelectric plates under mechanical and electrical loading", Scientia Iranica B, 18, 986-994. https://doi.org/10.1016/j.scient.2011.07.009.
- Bodaghi, M. and Shakeri, M. (2012) "An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads", Compos. Struct., 94, 1721-1735. https://doi.org/10.1016/j.compstruct.2012.01.009.
- Chen, W.Q. and Ding, H.J. (2002) "On free vibration of a functionally graded piezoelectric rectangular plate", Acta Mech., 153, 207-216. https://doi.org/10.1007/BF01177452.
- E. Mohseni, Saidi, A.R. and Mohammadi M. (2016) "Bendingstretching analysis of thick functionally graded micro-plates using higher-order shear and normal deformable plate theory", Mech. Adv. Mater. Struct., 24, 1221-1230. https://doi.org/10.1080/15376494.2016.1227503.
- Heyliger, P.R. and Ramirez, G. (2000) "Free vibration of laminated circular piezoelectric plates and discs", Sound Vib., 229, 935-956. https://doi.org/10.1006/jsvi.1999.2520.
- Huang, X., Sun, J. and Li, J. (2015) "Effect of Initial Residual Stress and Machining-Induced Residual Stress on the Deformation of Aluminium alloy Plate", J. Mech. Eng., 61, 131-137. https://doi.org/10.5545/sv-jme.2014.1897
- Jadhav, P. and Bajoria, K. (2013) "Stability analysis of piezoelectric FGM plate subjected to electro-mechanical loading using finite element method", Int. J. Appl. Sci. Eng., 11, 375- 391. http://dx.doi.org/10.6703%2fIJASE.2013.11(4).375.
- Jam, J.E. and Nia, N.G. (2012) "Dynamic analysis of FGPM annular plate based on the 3-D theory of elasticity", Int. J. Compos Mater., 2, 53-62.
- Lim, C.W. and He, L.H. (2001) "Exact solution of a compositionally graded piezoelectric layer under uniform stretch, bending and twisting", Int. J. Mech. Sci., 43, 2479-2492. https://doi.org/10.1016/S0020-7403(01)00059-5.
- Lu, P., Lee, H.P. and Lu, C. (2005) "An exact solution for functionally graded piezoelectric laminates in cylindrical bending", Int. J. Mech. Sci., 12, 437-458. https://doi.org/10.1016/j.ijmecsci.2005.01.012.
- Mindlin, R.D., Schaknow, A. and Deresiewicz, H. (1856) "Flexural vibration of rectangular plates", J. Appl. Mech., 23, 430-436.
- Mohammadi, M., Mohseni, E. and Moeinfar, M. (2019) "Bending, buckling and free vibration analysis of incompressible functionally graded plates using higher order shear and normal deformable plate theory", Appl. Math. Model., 69, 47-62. https://doi.org/10.1016/j.apm.2018.11.047.
- Nazari, M.B., Shariati, M., Eslami, M.R. and Hassani, B. (2011) "Computation of stress intensity factor in functionally graded plates under thermal shock", J. Mech. Eng., 57, 622-632.
- Reddy, J.N. (1984). "A simple higher-order theory for laminated composite plates", Appl. Mech., 45, 745-752. https://doi.org/10.1115/1.3167719.
- Reissner, E. (1994) "On the theory of bending of elastic plates", J. Math. Phys., 23, 184-191. https://doi.org/10.1002/sapm1944231184.
- Sheikholeslami, S.A. and Saidi, A.R. (2013) "Vibration analysis of functionally graded rectangular plates resting on elastic foundation sing higher-order shear and normal deformable plate theory", Compos. Struct., 106, 350-361. https://doi.org/10.1016/j.compstruct.2013.06.016.
- Wang, J. and Yang, J. (2000) "Higher-order theories of piezoelectric plates and applications", Appl. Mech. Rev., 53, 87-99. https://doi.org/10.1115/1.3097341.
- Wattanasakulponga, N. and Chaikittiratanab, A. (2015) "Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation", Appl. Math. Model., 39, 5459-5472. https://doi.org/10.1016/j.apm.2014.12.058.
- Wu, X.H., Chen, C.Q., Shen, Y.P. and Tian, X.G.A. (2002) "High order theory for functionally graded piezoelectric shells", Int. J. Solids Struct., 4, 5325-5344. https://doi.org/10.1016/S0020-7683(02)00418-3.
- Xiang, H.J. and Shi, Z.F. (2009) "Static analysis for functionally graded piezoelectric actuators or sensors under a combined electro-thermal load", Eur. J. Mech. A Solids, 28, 338-346. https://doi.org/10.1016/j.euromechsol.2008.06.007.
- Zhong, Z. and Shang, E.T. (2003) "Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate", Int. J. Solids Struct., 40, 5335-5352. https://doi.org/10.1016/S0020-7683(03)00288-9.
- Zhong Z. and Tao Y.U. (2006) "Vibration of simply supported functionally graded piezoelectric rectangular plate", Smart Mater. Struct., 15, 1726-1741. https://doi.org/10.1088/0964-1726/15/5/029.
Cited by
- Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory vol.39, pp.1, 2020, https://doi.org/10.12989/scs.2021.39.1.095