• Title/Summary/Keyword: principal support vector machine

Search Result 83, Processing Time 0.029 seconds

Using Machine Learning Techniques for Accurate Attack Detection in Intrusion Detection Systems using Cyber Threat Intelligence Feeds

  • Ehtsham Irshad;Abdul Basit Siddiqui
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.179-191
    • /
    • 2024
  • With the advancement of modern technology, cyber-attacks are always rising. Specialized defense systems are needed to protect organizations against these threats. Malicious behavior in the network is discovered using security tools like intrusion detection systems (IDS), firewall, antimalware systems, security information and event management (SIEM). It aids in defending businesses from attacks. Delivering advance threat feeds for precise attack detection in intrusion detection systems is the role of cyber-threat intelligence (CTI) in the study is being presented. In this proposed work CTI feeds are utilized in the detection of assaults accurately in intrusion detection system. The ultimate objective is to identify the attacker behind the attack. Several data sets had been analyzed for attack detection. With the proposed study the ability to identify network attacks has improved by using machine learning algorithms. The proposed model provides 98% accuracy, 97% precision, and 96% recall respectively.

Face Tracking System Using Updated Skin Color (업데이트된 피부색을 이용한 얼굴 추적 시스템)

  • Ahn, Kyung-Hee;Kim, Jong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.610-619
    • /
    • 2015
  • *In this paper, we propose a real-time face tracking system using an adaptive face detector and a tracking algorithm. An image is divided into the regions of background and face candidate by a real-time updated skin color identifying system in order to accurately detect facial features. The facial characteristics are extracted using the five types of simple Haar-like features. The extracted features are reinterpreted by Principal Component Analysis (PCA), and the interpreted principal components are processed by Support Vector Machine (SVM) that classifies into facial and non-facial areas. The movement of the face is traced by Kalman filter and Mean shift, which use the static information of the detected faces and the differences between previous and current frames. The proposed system identifies the initial skin color and updates it through a real-time color detecting system. A similar background color can be removed by updating the skin color. Also, the performance increases up to 20% when the background color is reduced in comparison to extracting features from the entire region. The increased detection rate and speed are acquired by the usage of Kalman filter and Mean shift.

Classficiation of Bupleuri Radix according to Geographical Origins using Near Infrared Spectroscopy (NIRS) Combined with Supervised Pattern Recognition

  • Lee, Dong Young;Kang, Kyo Bin;Kim, Jina;Kim, Hyo Jin;Sung, Sang Hyun
    • Natural Product Sciences
    • /
    • v.24 no.3
    • /
    • pp.164-170
    • /
    • 2018
  • Rapid geographical classification of Bupleuri Radix is important in quality control. In this study, near infrared spectroscopy (NIRS) combined with supervised pattern recognition was attempted to classify Bupleuri Radix according to geographical origins. Three supervised pattern recognitions methods, partial least square discriminant analysis (PLS-DA), quadratic discriminant analysis (QDA) and radial basis function support vector machine (RBF-SVM), were performed to establish the classification models. The QDA and RBF-SVM models were performed based on principal component analysis (PCA). The number of principal components (PCs) was optimized by cross-validation in the model. The results showed that the performance of the QDA model is the optimum among the three models. The optimized QDA model was obtained when 7 PCs were used; the classification rates of the QDA model in the training and test sets are 97.8% and 95.2% respectively. The overall results showed that NIRS combined with supervised pattern recognition could be applied to classify Bupleuri Radix according to geographical origin.

Real-Time Face Tracking System using Adaptive Face Detector and Kalman Filter (적응적 얼굴 검출기와 칼만 필터를 이용한 실시간 얼굴 추적 시스템)

  • Kim, Jong-Ho;Kim, Sang-Kyoon;Shin, Bum-Joo
    • Journal of Information Technology Services
    • /
    • v.6 no.3
    • /
    • pp.241-249
    • /
    • 2007
  • This paper describes a real-time face tracking system using effective detector and Kalman filter. In the proposed system, an image is separated into a background and an object using a real-time updated face color for effective face detection. The face features are extracted using the five types of simple Haar-like features. The extracted features are reinterpreted using Principal Component Analysis (PCA), and interpreted principal components are used for Support Vector Machine (SVM) that classifies the faces and non-faces. The moving face is traced with Kalman filter, which uses the static information of the detected faces and the dynamic information of changes between previous and current frames. The proposed system sets up an initial skin color and updates a region of a skin color through a moving skin color in a real time. It is possible to remove a background which has a similar color with a skin through updating a skin color in a real time. Also, as reducing a potential-face region using a skin color, the performance is increased up to 50% when comparing to the case of extracting features from a whole region.

Subtype classification of Human Breast Cancer via Kernel methods and Pattern Analysis of Clinical Outcome over the feature space (Kernel Methods를 이용한 Human Breast Cancer의 subtype의 분류 및 Feature space에서 Clinical Outcome의 pattern 분석)

  • Kim, Hey-Jin;Park, Seungjin;Bang, Sung-Uang
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.175-177
    • /
    • 2003
  • This paper addresses a problem of classifying human breast cancer into its subtypes. A main ingredient in our approach is kernel machines such as support vector machine (SVM). kernel principal component analysis (KPCA). and kernel partial least squares (KPLS). In the task of breast cancer classification, we employ both SVM and KPLS and compare their results. In addition to this classification. we also analyze the patterns of clinical outcomes in the feature space. In order to visualize the clinical outcomes in low-dimensional space, both KPCA and KPLS are used. It turns out that these methods are useful to identify correlations between clinical outcomes and the nonlinearly protected expression profiles in low-dimensional feature space.

  • PDF

Quality Inspection of Dented Capsule using Curve Fitting-based Image Segmentation

  • Kwon, Ki-Hyeon;Lee, Hyung-Bong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.125-130
    • /
    • 2016
  • Automatic quality inspection by computer vision can be applied and give a solution to the pharmaceutical industry field. Pharmaceutical capsule can be easily affected by flaws like dents, cracks, holes, etc. In order to solve the quality inspection problem, it is required computationally efficient image processing technique like thresholding, boundary edge detection and segmentation and some automated systems are available but they are very expensive to use. In this paper, we have developed a dented capsule image processing technique using edge-based image segmentation, TLS(Total Least Squares) curve fitting technique and adopted low cost camera module for capsule image capturing. We have tested and evaluated the accuracy, training and testing time of the classification recognition algorithms like PCA(Principal Component Analysis), ICA(Independent Component Analysis) and SVM(Support Vector Machine) to show the performance. With the result, PCA, ICA has low accuracy, but SVM has good accuracy to use for classifying the dented capsule.

A Study on Performance Evaluation of Typical Classification Techniques for Micro-cracks of Silicon Wafer (실리콘 웨이퍼 마이크로크랙을 위한 대표적 분류 기술의 성능 평가에 관한 연구)

  • Kim, Sang Yeon;Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.6-11
    • /
    • 2016
  • Silicon wafer is one of main materials in solar cell. Micro-cracks in silicon wafer are one of reasons to decrease efficiency of energy transformation. They couldn't be observed by human eye. Also, their shape is not only various but also complicated. Accordingly, their shape classification is absolutely needed for manufacturing process quality and its feedback. The performance of typical classification techniques which is principal component analysis(PCA), neural network, fusion model to integrate PCA with neural network, and support vector machine(SVM), are evaluated using pattern features of micro-cracks. As a result, it has been confirmed that the SVM gives good results in micro-crack classification.

Fault Diagnosis of Induction Motor by Hierarchical Classifier (계층구조의 분류기에 의한 유도전동기 고장진단)

  • Lee, Dae-Jong;Song, Chang-Kyu;Lee, Jae-Kyung;Chun, Myung-Guen
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.513-518
    • /
    • 2007
  • In this paper, we propose a fault diagnosis scheme tor induction motor by adopting a hierarchical classifier consisting of k-Nearest Neighbors(k-NN) and Support Vector Machine(SVM). First, some motor conditions are classified by a simple k-NN classifier in advance. And then, more complicated classes are distinguished by SVM. To obtain the normal and fault data, we established an experimental unit with induction motor system and data acquisition module. Feature extraction is performed by Principal Component Analysis(PCA). To show its effectiveness, the proposed fault diagnostic system has been intensively tested with various data acquired under the different electrical and mechanical faults with varying load.

Driver Verification System Using Biometrical GMM Supervector Kernel (생체기반 GMM Supervector Kernel을 이용한 운전자검증 기술)

  • Kim, Hyoung-Gook
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.67-72
    • /
    • 2010
  • This paper presents biometrical driver verification system in car experiment through analysis of speech, and face information. We have used Mel-scale Frequency Cesptral Coefficients (MFCCs) for speaker verification using speech information. For face verification, face region is detected by AdaBoost algorithm and dimension-reduced feature vector is extracted by using principal component analysis only from face region. In this paper, we apply the extracted speech- and face feature vectors to an SVM kernel with Gaussian Mixture Models(GMM) supervector. The experimental results of the proposed approach show a clear improvement compared to a simple GMM or SVM approach.

Prediction Models for Solitary Pulmonary Nodules Based on Curvelet Textural Features and Clinical Parameters

  • Wang, Jing-Jing;Wu, Hai-Feng;Sun, Tao;Li, Xia;Wang, Wei;Tao, Li-Xin;Huo, Da;Lv, Ping-Xin;He, Wen;Guo, Xiu-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6019-6023
    • /
    • 2013
  • Lung cancer, one of the leading causes of cancer-related deaths, usually appears as solitary pulmonary nodules (SPNs) which are hard to diagnose using the naked eye. In this paper, curvelet-based textural features and clinical parameters are used with three prediction models [a multilevel model, a least absolute shrinkage and selection operator (LASSO) regression method, and a support vector machine (SVM)] to improve the diagnosis of benign and malignant SPNs. Dimensionality reduction of the original curvelet-based textural features was achieved using principal component analysis. In addition, non-conditional logistical regression was used to find clinical predictors among demographic parameters and morphological features. The results showed that, combined with 11 clinical predictors, the accuracy rates using 12 principal components were higher than those using the original curvelet-based textural features. To evaluate the models, 10-fold cross validation and back substitution were applied. The results obtained, respectively, were 0.8549 and 0.9221 for the LASSO method, 0.9443 and 0.9831 for SVM, and 0.8722 and 0.9722 for the multilevel model. All in all, it was found that using curvelet-based textural features after dimensionality reduction and using clinical predictors, the highest accuracy rate was achieved with SVM. The method may be used as an auxiliary tool to differentiate between benign and malignant SPNs in CT images.