• Title/Summary/Keyword: principal machine

Search Result 224, Processing Time 0.029 seconds

Sensor Selection Strategies for Activity Recognition in a Smart Environment (스마트 환경에서 행위 인식을 위한 센서 선정 기법)

  • Gu, Sungdo;Sohn, Kyung-Ah
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.1031-1038
    • /
    • 2015
  • The recent emergence of smart phones, wearable devices, and even the IoT concept made it possible for various objects to interact one another anytime and anywhere. Among many of such smart services, a smart home service typically requires a large number of sensors to recognize the residents' activities. For this reason, the ideas on activity recognition using the data obtained from those sensors are actively discussed and studied these days. Furthermore, plenty of sensors are installed in order to recognize activities and analyze their patterns via data mining techniques. However, if many of these sensors should be installed for IoT smart home service, it raises the issue of cost and energy consumption. In this paper, we proposed a new method for reducing the number of sensors for activity recognition in a smart environment, which utilizes the principal component analysis and clustering techniques, and also show the effect of improvement in terms of the activity recognition by the proposed method.

A Study on Search Query Topics and Types using Topic Modeling and Principal Components Analysis (토픽모델링 및 주성분 분석 기반 검색 질의 유형 분류 연구)

  • Kang, Hyun-Ah;Lim, Heui-Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.6
    • /
    • pp.223-234
    • /
    • 2021
  • Recent advances in the 4th Industrial Revolution have accelerated the change of the shopping behavior from offline to online. Search queries show customers' information needs most intensively in online shopping. However, there are not many search query research in the field of search, and most of the prior research in the field of search query research has been studied on a limited topic and data-based basis based on researchers' qualitative judgment. To this end, this study defines the type of search query with data-based quantitative methodology by applying machine learning to search research query field to define the 15 topics of search query by conducting topic modeling based on search query and clicked document information. Furthermore, we present a new classification system of new search query types representing searching behavior characteristics by extracting key variables through principal component analysis and analyzing. The results of this study are expected to contribute to the establishment of effective search services and the development of search systems.

Research on Overseas Trends and Emerging Topics in Field of Library and Information Science (문헌정보학분야 해외 연구 동향 및 유망 주제 분석 연구)

  • Bon Jin Koo;Durk Hyun Chang
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.3
    • /
    • pp.71-96
    • /
    • 2023
  • This study aimed to investigate key research areas in the field of Library and Information Science (LIS) by analyzing trends and identifying emerging topics. To facilitate the research, a collection of 40,897 author keywords from 11,252 papers published in the past 30 years (1993-2022) in five journals was gathered. In addition, keyword analysis, as well as Principal Component Analysis (PCA) and correlation analysis were conducted, utilizing variables such as the number of articles, number of authors, ratio of co-authored papers, and cited counts. The findings of the study suggest that two topics are likely to develop as promising research areas in LIS in the future: machine learning/algorithm and research impact. Furthermore, it is anticipated that future research will focus on topics such as social media and big data, natural language processing, research trends, and research assessment, as they are expected to emerge as prominent areas of study.

An Electric Load Forecasting Scheme for University Campus Buildings Using Artificial Neural Network and Support Vector Regression (인공 신경망과 지지 벡터 회귀분석을 이용한 대학 캠퍼스 건물의 전력 사용량 예측 기법)

  • Moon, Jihoon;Jun, Sanghoon;Park, Jinwoong;Choi, Young-Hwan;Hwang, Eenjun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.293-302
    • /
    • 2016
  • Since the electricity is produced and consumed simultaneously, predicting the electric load and securing affordable electric power are necessary for reliable electric power supply. In particular, a university campus is one of the highest power consuming institutions and tends to have a wide variation of electric load depending on time and environment. For these reasons, an accurate electric load forecasting method that can predict power consumption in real-time is required for efficient power supply and management. Even though various influencing factors of power consumption have been discovered for the educational institutions by analyzing power consumption patterns and usage cases, further studies are required for the quantitative prediction of electric load. In this paper, we build an electric load forecasting model by implementing and evaluating various machine learning algorithms. To do that, we consider three building clusters in a campus and collect their power consumption every 15 minutes for more than one year. In the preprocessing, features are represented by considering periodic characteristic of the data and principal component analysis is performed for the features. In order to train the electric load forecasting model, we employ both artificial neural network and support vector machine. We evaluate the prediction performance of each forecasting model by 5-fold cross-validation and compare the prediction result to real electric load.

Prediction Models for Solitary Pulmonary Nodules Based on Curvelet Textural Features and Clinical Parameters

  • Wang, Jing-Jing;Wu, Hai-Feng;Sun, Tao;Li, Xia;Wang, Wei;Tao, Li-Xin;Huo, Da;Lv, Ping-Xin;He, Wen;Guo, Xiu-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6019-6023
    • /
    • 2013
  • Lung cancer, one of the leading causes of cancer-related deaths, usually appears as solitary pulmonary nodules (SPNs) which are hard to diagnose using the naked eye. In this paper, curvelet-based textural features and clinical parameters are used with three prediction models [a multilevel model, a least absolute shrinkage and selection operator (LASSO) regression method, and a support vector machine (SVM)] to improve the diagnosis of benign and malignant SPNs. Dimensionality reduction of the original curvelet-based textural features was achieved using principal component analysis. In addition, non-conditional logistical regression was used to find clinical predictors among demographic parameters and morphological features. The results showed that, combined with 11 clinical predictors, the accuracy rates using 12 principal components were higher than those using the original curvelet-based textural features. To evaluate the models, 10-fold cross validation and back substitution were applied. The results obtained, respectively, were 0.8549 and 0.9221 for the LASSO method, 0.9443 and 0.9831 for SVM, and 0.8722 and 0.9722 for the multilevel model. All in all, it was found that using curvelet-based textural features after dimensionality reduction and using clinical predictors, the highest accuracy rate was achieved with SVM. The method may be used as an auxiliary tool to differentiate between benign and malignant SPNs in CT images.

A Study on the Interfacial Bonding in AlN Ceramics/Metals Joints: I. Residual Stress Analysis of AlN/Cu and AlN/W Joints Produced by Active-Metal Brazing (AlN 세라믹스와 금속간 계면접합에 관한 연구 : I. AlN/Cu 및 AlN/W 활성금속브레이징 접합체의 잔류응력 해석)

  • Park, Sung-Gye;Lee, Seung-Hae;Kim, Ji-Soon;You, Hee;Yum, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.962-969
    • /
    • 1999
  • Elastic and elasto-plastic stress analyses of AlN/Cu and AlN/W pints produced by active-metal brazing method using Ag-Cu-Ti insert-metal were performed with use of Finite-Element-Method(FEM). The results of stress analyses were compared with those from the pint strength tests and the observations of fracture behaviors. It was shown that a remarkably larger maximum principal stress is built in the AlN/Cu pint compared to the A1N/ W joint. Especially, the stress concentration with tensile component was confirmed at the free surface close to the bonded interface of AlN/Cu. The elasto-plastic analysis under consideration of stress relaxation effect of Ag-Cu-Ti insert possessing a so-called 'soft-metal effect' showed that the insert leads to a lowering of maximum principal stress in AlNiCu pint, even though an increase of the insert thickness above 100$\mu\textrm{m}$ could not bring its further decrease. The maximum pint strengths measured by shear test were 52 and 108 MPa for AlNiCu and AlN/W pints. respectively. Typical fractures of AlN/Cu pints occurred in a form of 'dome' which initiated from the free surface of AlN close to the bonded interface and proceeded towards the AlN inside forming a large angle. AlN/W pints were usually fractured at AlN side along the interface of AlN/insert-metal.

  • PDF

Classification and discrimination of excel radial charts using the statistical shape analysis (통계적 형상분석을 이용한 엑셀 방사형 차트의 분류와 판별)

  • Seungeon Lee;Jun Hong Kim;Yeonseok Choi;Yong-Seok Choi
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.73-86
    • /
    • 2024
  • A radial chart of Excel is very useful graphical method in delivering information for numerical data. However, it is not easy to discriminate or classify many individuals. In this case, after shaping each individual of a radial chart, we need to apply shape analysis. For a radial chart, since landmarks for shaping are formed as many as the number of variables representing the characteristics of the object, we consider a shape that connects them to a line. If the shape becomes complicated due to the large number of variables, it is difficult to easily grasp even if visualized using a radial chart. Principal component analysis (PCA) is performed on variables to create a visually effective shape. The classification table and classification rate are checked by applying the techniques of traditional discriminant analysis, support vector machine (SVM), and artificial neural network (ANN), before and after principal component analysis. In addition, the difference in discrimination between the two coordinates of generalized procrustes analysis (GPA) coordinates and Bookstein coordinates is compared. Bookstein coordinates are obtained by converting the position, rotation, and scale of the shape around the base landmarks, and show higher rate than GPA coordinates for the classification rate.

Oil Spill Visualization and Particle Matching Algorithm (유출유 이동 가시화 및 입자 매칭 알고리즘)

  • Lee, Hyeon-Chang;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.53-59
    • /
    • 2020
  • Initial response is important in marine oil spills, such as the Hebei Spirit oil spill, but it is very difficult to predict the movement of oil out of the ocean, where there are many variables. In order to solve this problem, the forecasting of oil spill has been carried out by expanding the particle prediction, which is an existing study that studies the movement of floats on the sea using the data of the float. In the ocean data format HDF5, the current and wind velocity data at a specific location were extracted using bilinear interpolation, and then the movement of numerous points was predicted by particles and the results were visualized using polygons and heat maps. In addition, we propose a spill oil particle matching algorithm to compensate for the lack of data and the difference between the spilled oil and movement. The spilled oil particle matching algorithm is an algorithm that tracks the movement of particles by granulating the appearance of surface oil spilled oil. The problem was segmented using principal component analysis and matched using genetic algorithm to the point where the variance of travel distance of effluent oil is minimized. As a result of verifying the effluent oil visualization data, it was confirmed that the particle matching algorithm using principal component analysis and genetic algorithm showed the best performance, and the mean data error was 3.2%.

Analysis on Correlation between AE Parameters and Stress Intensity Factor using Principal Component Regression and Artificial Neural Network (주성분 회귀분석 및 인공신경망을 이용한 AE변수와 응력확대계수와의 상관관계 해석)

  • Kim, Ki-Bok;Yoon, Dong-Jin;Jeong, Jung-Chae;Park, Phi-Iip;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.80-90
    • /
    • 2001
  • The aim of this study is to develop the methodology which enables to identify the mechanical properties of element such as stress intensity factor by using the AE parameters. Considering the multivariate and nonlinear properties of AE parameters such as ringdown count, rise time, energy, event duration and peak amplitude from fatigue cracks of machine element the principal component regression(PCR) and artificial neural network(ANN) models for the estimation of stress intensity factor were developed and validated. The AE parameters were found to be very significant to estimate the stress intensity factor. Since the statistical values including correlation coefficients, standard mr of calibration, standard error of prediction and bias were stable, the PCR and ANN models for stress intensity factor were very robust. The performance of ANN model for unknown data of stress intensity factor was better than that of PCR model.

  • PDF

Design of Automatic Classification System of Black Plastics Based on Support Vector Machine Using Raman Spectroscopy (라만분광법을 이용한 SVM 기반 흑색 플라스틱 자동 분류 시스템의 설계)

  • Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.416-422
    • /
    • 2016
  • Lots of plastics are widely used in a variety of industrial field. And the amount of plastic waste is massively produced. In the study of waste recycling, it is emerged as an important issue to prevent the waste of potentially useful resource materials as well as to reduce ecological damage. So, the recycling of plastic waste has been currently paid attention to from the view point of reuse. Existing automatic sorting system consist of near infrared ray (NIR) sensors to classify the types of plastics. But the classification of black plastics still remains a challenge. Black plastics which contains carbon black are not almost classified by NIR because of the characteristic of the light absorption of black plastics. This study is focused on handling how to identify black plastics instead of NIR. Raman spectroscopy is used to get qualitative as well as quantitative analysis of black plastics. In order to improve the performance of identification, Support Vector Machine(SVM) classifier and Principal Component Analysis(PCA) are exploited to more preferably classify some kinds of the black plastics, and to analyze the characteristic of each data.