• 제목/요약/키워드: principal curvature vector

검색결과 14건 처리시간 0.021초

REAL HYPERSURFACES WITH ξ-PARALLEL RICCI TENSOR IN A COMPLEX SPACE FORM

  • Ahn, Seong-Soo;Han, Seung-Gook;Kim, Nam-Gil;Lee, Seong-Baek
    • 대한수학회논문집
    • /
    • 제13권4호
    • /
    • pp.825-838
    • /
    • 1998
  • We prove that if a real hypersurface with constant mean curvature of a complex space form satisfying ▽$_{ξ/}$S = 0 and Sξ = $\sigma$ξ for a smooth function $\sigma$, then the structure vector field ξ is principal, where S denotes the Ricci tensor of the hypersurface.

  • PDF

REAL HYPERSURFACES SATISFYING ${\nabla}_{\xi}S$ = 0 OF A COMPLEX SPACE FORM

  • Kang, Eun-Hee;Ki, U-Hang
    • 대한수학회보
    • /
    • 제35권4호
    • /
    • pp.819-835
    • /
    • 1998
  • The main purpose of this paper is to prove that if a real hypersurfaces M of a complex space form satisfies ${\nabla}_{\xi}S$=0 and $S{\xi}=\sigma\xi$ for some constant on $\sigma$ on M, then the structure vector field $\xi$ is principal, where S denotes the Ricci tensors of M.

  • PDF

SURFACES IN $\mathbb{E}^3$ WITH L1-POINTWISE 1-TYPE GAUSS MAP

  • Kim, Young Ho;Turgay, Nurettin Cenk
    • 대한수학회보
    • /
    • 제50권3호
    • /
    • pp.935-949
    • /
    • 2013
  • In this paper, we study surfaces in $\mathb{E}^3$ whose Gauss map G satisfies the equation ${\Box}G=f(G+C)$ for a smooth function $f$ and a constant vector C, where ${\Box}$ stands for the Cheng-Yau operator. We focus on surfaces with constant Gaussian curvature, constant mean curvature and constant principal curvature with such a property. We obtain some classification and characterization theorems for these kinds of surfaces. Finally, we give a characterization of surfaces whose Gauss map G satisfies the equation ${\Box}G={\lambda}(G+C)$ for a constant ${\lambda}$ and a constant vector C.

REAL HYPERSURFACES OF THE JACOBI OPERATOR WITH RESPECT TO THE STRUCTURE VECTOR FIELD IN A COMPLEX SPACE FORM

  • AHN, SEONG-SOO
    • 대한수학회보
    • /
    • 제42권2호
    • /
    • pp.279-294
    • /
    • 2005
  • We study a real hypersurface M satisfying $L_{\xi}S=0\;and\;R_{\xi}S=SR_{\xi}$ in a complex hyperbolic space $H_n\mathbb{C}$, where S is the Ricci tensor of type (1,1) on M, $L_{\xi}\;and\;R_{\xi}$ denotes the operator of the Lie derivative and the Jacobi operator with respect to the structure vector field e respectively.

On real hypersurfaces of a complex hyperbolic space

  • Kang, Eun-Hee;Ki, U-Hang
    • 대한수학회보
    • /
    • 제34권2호
    • /
    • pp.173-184
    • /
    • 1997
  • An n-dimensional complex space form $M_n(c)$ is a Kaehlerian manifold of constant holomorphic sectional curvature c. As is well known, complete and simply connected complex space forms are a complex projective space $P_n C$, a complex Euclidean space $C_n$ or a complex hyperbolic space $H_n C$ according as c > 0, c = 0 or c < 0.

  • PDF

DEFORMING PINCHED HYPERSURFACES OF THE HYPERBOLIC SPACE BY POWERS OF THE MEAN CURVATURE INTO SPHERES

  • Guo, Shunzi;Li, Guanghan;Wu, Chuanxi
    • 대한수학회지
    • /
    • 제53권4호
    • /
    • pp.737-767
    • /
    • 2016
  • This paper concerns closed hypersurfaces of dimension $n{\geq}2$ in the hyperbolic space ${\mathbb{H}}_{\kappa}^{n+1}$ of constant sectional curvature evolving in direction of its normal vector, where the speed equals a power ${\beta}{\geq}1$ of the mean curvature. The main result is that if the initial closed, weakly h-convex hypersurface satisfies that the ratio of the biggest and smallest principal curvature at everywhere is close enough to 1, depending only on n and ${\beta}$, then under the flow this is maintained, there exists a unique, smooth solution of the flow which converges to a single point in ${\mathbb{H}}_{\kappa}^{n+1}$ in a maximal finite time, and when rescaling appropriately, the evolving hypersurfaces exponential convergence to a unit geodesic sphere of ${\mathbb{H}}_{\kappa}^{n+1}$.

THE JACOBI OPERATOR OF REAL HYPERSURFACES IN A COMPLEX SPACE FORM

  • Ki, U-Hang;Kim, He-Jin;Lee, An-Aye
    • 대한수학회논문집
    • /
    • 제13권3호
    • /
    • pp.545-560
    • /
    • 1998
  • Let ø and A be denoted by the structure tensor field of type (1,1) and by the shape operator of a real hypersurface in a complex space form $M_{n}$ (c), c $\neq$ 0 respectively. The main purpose of this paper is to prove that if a real hypersurface in $M_{n}$ (c) satisfies $R_{ξ}$ øA = $AøR_{ξ}$, then the structure vector field ξ is principal, where $R_{ξ}$ / is the Jacobi operator with respect to ξ.

  • PDF

A CHARACTERIZATION OF CONCENTRIC HYPERSPHERES IN ℝn

  • Kim, Dong-Soo;Kim, Young Ho
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.531-538
    • /
    • 2014
  • Concentric hyperspheres in the n-dimensional Euclidean space $\mathbb{R}^n$ are the level hypersurfaces of a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$. The magnitude $||{\nabla}f||$ of the gradient of such a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ is a function of the function f. We are interested in the converse problem. As a result, we show that if the magnitude of the gradient of a function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ with isolated critical points is a function of f itself, then f is either a radial function or a function of a linear function. That is, the level hypersurfaces are either concentric hyperspheres or parallel hyperplanes. As a corollary, we see that if the magnitude of a conservative vector field with isolated singularities on $\mathbb{R}^n$ is a function of its scalar potential, then either it is a central vector field or it has constant direction.

REAL HYPERSURFACES IN THE COMPLEX HYPERBOLIC QUADRIC WITH CYCLIC PARALLEL STRUCTURE JACOBI OPERATOR

  • Jin Hong Kim;Hyunjin Lee;Young Jin Suh
    • 대한수학회지
    • /
    • 제61권2호
    • /
    • pp.309-339
    • /
    • 2024
  • Let M be a real hypersurface in the complex hyperbolic quadric Qm*, m ≥ 3. The Riemannian curvature tensor field R of M allows us to define a symmetric Jacobi operator with respect to the Reeb vector field ξ, which is called the structure Jacobi operator Rξ = R( · , ξ)ξ ∈ End(TM). On the other hand, in [20], Semmelmann showed that the cyclic parallelism is equivalent to the Killing property regarding any symmetric tensor. Motivated by his result above, in this paper we consider the cyclic parallelism of the structure Jacobi operator Rξ for a real hypersurface M in the complex hyperbolic quadric Qm*. Furthermore, we give a complete classification of Hopf real hypersurfaces in Qm* with such a property.

주곡률 해석 기반의 투영 텍스처를 이용한 스타일 반사 효과 (Stylized Specular Reflections Using Projective Textures based on Principal Curvature Analysis)

  • 이환직;최정주
    • 한국HCI학회논문지
    • /
    • 제1권1호
    • /
    • pp.37-44
    • /
    • 2006
  • 물체의 반사 효과는 물체의 재질, 기하학적 모양 및 조명 환경을 표현하는데 있어 매우 중요한 요소이다. 사진품질을 추구하는 사실적 렌더링에서는 기존의 국소 반사 모델을 사용하여 좋은 결과를 얻을 수 있지만, 사용자의 주관이 중시되는 비사실적 렌더링에서는 사용자가 원하는 반사 효과를 표현할 수 있어야 한다. 텍스처는 사용자가 원하는 반사 효과를 직관적으로 표현할 수 있는 수단이며, 이 텍츠처를 모델에 투영하면 원하는 반사 효과를 얻을 수 있다. 이 때 사용자는 텍스처가 투영될 위치와 크기, 방향을 직접 키프레임으로 정해 줄 수 있다. 그러나 모든 반사 효과를 사용자가 직접 정해준다는 것은 번거로운 일이며, 아울러 실시간 응용분야에는 적용할 수 없는 단점이 있다. 본 논문에서는 국소반사모델과 주곡률 해석을 통해 반사 효과의 위치, 방향 및 크기를 결정하기 위한 텍스처 투영기의 새로운 설정 방법을 제시한다. 광원과 시점 정보로부터 주어진 모델 위에서 최대 명점을 구한 후, 텍스처 투영기를 최대 조명점을 지나는 법선 벡터에 평행한 직선 위에 위치시킨다. 투영기의 방위를 최대 조명점에서의 주방향에 따라서 일치시키고, 투영기의 투영 피라미드의 크기를 주곡률에 따라서 결정한다. 텍스처 투영기의 단순한 이동, 회전 및 주곡률 값의 조절을 통하여 반사 영역의 이동, 회전 및 확대/축소가 가능하다. 본 논문에서 제시한 방법은 DirectX 9.0c와 프로그램이 가능한 셰이더 2.0을 사용하여 GeForce FX 7800 그래픽 카드에 구현되었다. 본 논문의 연구 결과는 만화적 표현을 추구하는 게임 등과 같은 실시간 응용분야에 사용될 수 있으며, 실험 결과에 의하면 수만 개의 다면체 모델에 대한 스타일 반사효과를 실시간에 렌더링할 수 있다.

  • PDF