• 제목/요약/키워드: primordial magnetic field

검색결과 6건 처리시간 0.02초

EVOLUTION OF THE PRIMORDIAL MAGNETIC FIELD I. INITIAL MORPHOLOGY AND STRENGTH

  • Jung, Jae-Hun;Park, Chang-Bom
    • 천문학회지
    • /
    • 제28권2호
    • /
    • pp.109-117
    • /
    • 1995
  • The morphology and strength of the primordial magnetic field which is generated spontaneously in the early universe are studied for three models: (1) inflation (2) primordial magnetized bubble and (3) primordial turbulence models, We calculate the power spectra of magnetic field that are scale-free and proportional to $k^{1.5},k^{3{\sim}4}$ and $k^{2/3}$, respectively. The configurations of magnetic field having these power spectra are visualized. To constrain the present strength of the primordial magnetic field we calculate the anisotropy of the microwave background radiation in Bianchi type I universe with globally homogeneous magnetic field. From the COBE limit of the quadrupole moment of $({\delta}T/T)_{l=2}$ the present strength of horizen-scale magnetic fields $B_p$ is constrained to be less than $9{\times}10^{-8}G$.

  • PDF

PRIMORDIAL BLACKHOLE AS A SEED FOR THE COSMIC MAGNETIC FIELD

  • LA DAIL;PARK CHANGBOM
    • 천문학회지
    • /
    • 제29권2호
    • /
    • pp.83-91
    • /
    • 1996
  • We present a model that rotating primordial blackholes(PBHs) produced at the end of inflation generate the random, non-oriented primordial magnetic field. PBHs are copiously produced as the Universe completes the cosmic phase transition via bubble nucleation and tunneling processes in the extended inflation hypothesis. The PBHs produced acquire angular momentum through the mutual tidal gravitational interaction. For PBHs of mass less than 1013g, one can show that the evaporation (photon) luminosity of PBHs exceeds the Eddington limit. Thus throughout the lifetime of the rotating PBH, radiation flow from the central blackhole along the Kerr-geodesic exerts torque to ambient plasma. In the process similar to the Bierman's battery mechanism electron current reaching up to the horizon scale is induced. For PBHs of Grand Unified Theories extended inflation with the symmetry breaking temperature of $T_{GUT}\;\~\;10^{10}$ GeV, which evaporate near decoupling, we find that they generate random, non-oriented magnetic fields of $\~10^{-11}G$ on the last-scattering surface on (the present comoving) scales of $\~O(10)Mpc$.

  • PDF

THE ORIGIN OF LARGE SCALE GALACTIC MAGNETIC FIELDS

  • SUBRAMANIAN K.
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.155-158
    • /
    • 1996
  • Magnetic fields correlated on several kiloparsec scales are seen in spiral galaxies. Their origin could be due to the winding up of a primordial cosmological field or due to amplification of a small seed field by a turbulent galactic dynamo. Both options have difficulties: There is no known battery mechanism for producing the required primordial field. Equally the turbulent dynamo may self destruct before being able to produce the large scale field, due to excess generation of small scale power. The current status of these difficulties is discussed. The resolution could depend on the nature of the saturated field produced by the small scale dynamo. We argue that the small scale fields do not fill most of the volume of the fluid and instead concentrate into intermittent ropes, with their peak value of order equipartition fields, and radii much smaller than their lengths. In this case these fields neither drain significant energy from the turbulence nor convert eddy motion of the turbulence on the outer scale to wave like motion. This preserves the diffusive effects needed for the large scale dynamo operation.

  • PDF

Viscosity and Turbulence Dynamo in the Intracluster Medium

  • Cho, Jungyeon
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.49.1-49.1
    • /
    • 2015
  • The origin of magnetic fields in the intracluster medium (ICM) is uncertain: it can be either primordial or astrophysical. Turbulence plays important roles in the origin of magnetic fields in the ICM. This is because turbulence can amplify a weak seed magnetic field very efficiently. The efficiency of the turbulence dynamo critically depends on the magnitude of viscosity: the smaller the viscosity is, the more efficient the turbulence dynamo is. In this talk, I'll discuss turbulence dynamo in both very small viscosity limit and very large viscosity limit. I'll show that when the viscosity in the ICM is comparable to the Spitzer viscosity, the origin of magnetic field in the ICM is likely to be astrophysical. On the other hans, when the viscosity is much smaller than the Spitzer value, the origin of magnetic field can be either astrophysical or primordial.

  • PDF

First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

  • Maidana, Carlos O.;Nieminen, Juha E.
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.82-91
    • /
    • 2017
  • Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.