• 제목/요약/키워드: primitive polynomials

검색결과 27건 처리시간 0.02초

스트림암호에서 원시다항식에 대한 고찰 (A Study on primitive polynomial in stream cipher)

  • 양정모
    • 융합보안논문지
    • /
    • 제18권4호
    • /
    • pp.27-33
    • /
    • 2018
  • 스트림 암호는 1회용 패드(one time pad)형 암호 알고리즘으로 랜덤한 비트(또는 문자)들의 열을 열쇠로 사용하여 평문과 XOR과 같은 간단한 연산을 통해 암호화하므로 알고리즘의 안전성은 사용되는 열쇠의 난수성에 의존한다. 그러므로 사용되는 열쇠에 대해 주기, 선형복잡도, 비선형도, 상관면역도 등의 수학적 분석을 통해 보다 안전한 암호시스템을 설계할 수 있는 장점이 있다. 스트림 암호에서의 암호화 열쇠는 고유다항식을 가지고 LFSR(linear feedback shift register)에서 열쇠이진 수열을 생성하여 사용한다. 이 고유다항식 중 비도가 가장 우수한 다항식이 바로 원시다항식이다. 원시다항식은 스트림 암호뿐만 아니라 8차 원시 다항식을 사용한 블록암호인 SEED암호, 그리고 24차 원시 다항식을 사용하여 설계한 공개열쇠암호인 CR(Chor-Rivest) 암호 등에서도 널리 이용되고 있다. 본 논문의 주요내용은 이러한 암호알고리즘을 연구하는데 사용되는 갈루아(Galois)체에서의 원시다항식에 대한 개념과 다양한 성질들을 고찰해 보고 소수 p의 값이 2이상인 경우 $F_p$에서의 기약다항식과 원시다항식의 개수를 구하는 정리를 증명해 보았다. 이러한 연구는 보다 비도가 높은 원시다항식을 찾아 새로운 암호알고리즘을 개발하는 기반 연구가 될 수 있다.

  • PDF

Relation between the Irreducible Polynomials that Generates the Same Binary Sequence Over Odd Characteristic Field

  • Ali, Md. Arshad;Kodera, Yuta;Park, Taehwan;Kusaka, Takuya;Nogmi, Yasuyuki;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • 제16권3호
    • /
    • pp.166-172
    • /
    • 2018
  • A pseudo-random sequence generated by using a primitive polynomial, trace function, and Legendre symbol has been researched in our previous work. Our previous sequence has some interesting features such as period, autocorrelation, and linear complexity. A pseudo-random sequence widely used in cryptography. However, from the aspect of the practical use in cryptographic systems sequence needs to generate swiftly. Our previous sequence generated by utilizing a primitive polynomial, however, finding a primitive polynomial requires high calculating cost when the degree or the characteristic is large. It’s a shortcoming of our previous work. The main contribution of this work is to find some relation between the generated sequence and irreducible polynomials. The purpose of this relationship is to generate the same sequence without utilizing a primitive polynomial. From the experimental observation, it is found that there are (p - 1)/2 kinds of polynomial, which generates the same sequence. In addition, some of these polynomials are non-primitive polynomial. In this paper, these relationships between the sequence and the polynomials are shown by some examples. Furthermore, these relationships are proven theoretically also.

THE ARITHMETIC OF CARLITZ POLYNOMIALS

  • Bae, Sung-Han
    • 대한수학회지
    • /
    • 제35권2호
    • /
    • pp.341-360
    • /
    • 1998
  • Some interesting properties of Carlitz cyclotomic polynomials analogous to those of classical cyclotomic polynomials are given.

  • PDF

MINIMAL QUADRATIC RESIDUE CYCLIC CODES OF LENGTH $2^{n}$

  • BATRA SUDHIR;ARORA S. K.
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.25-43
    • /
    • 2005
  • Let F be a finite field of prime power order q(odd) and the multiplicative order of q modulo $2^{n}\;(n>1)\;be\; {\phi}(2^{n})/2$. If n > 3, then q is odd number(prime or prime power) of the form $8m{\pm}3$. If q = 8m - 3, then the ring $R_{2^n} = F[x]/ < x^{2^n}-1 >$ has 2n primitive idempotents. The explicit expressions for these primitive idempotents are obtained and the minimal QR cyclic codes of length $2^{n}$ generated by these idempotents are completely described. If q = 8m + 3 then the expressions for the 2n - 1 primitive idempotents of $R_{2^n}$ are obtained. The generating polynomials and the upper bounds of the minimum distance of minimal QR cyclic codes generated by these 2n-1 idempotents are also obtained. The case n = 2,3 is dealt separately.

Some Properties of Maximum Length Cellular Automata

  • Cho, Sung-Jin;Kim, Han-Doo;Choi, Un-Sook
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제3권2호
    • /
    • pp.137-145
    • /
    • 1999
  • In this paper, We consider two-dimensional Maximum Length Cellular Automata (2-D MLCA) as an extension of the 1-D MLCA. 2-D MLCA can display much better random patterns than those generated by 1-D CA and LFSR. To generate random pattern, a CA should have a maximum length cycle. So, it is necessary to find MLCA that the characteristic polynomial of the transition matrix is primitive. New boundary conditions of 3 types are proposed and some rules having primitive polynomials of 2-D MLCA are found.

  • PDF

IRREDUCIBILITY OF HURWITZ POLYNOMIALS OVER THE RING OF INTEGERS

  • Oh, Dong Yeol;Seo, Ye Lim
    • Korean Journal of Mathematics
    • /
    • 제27권2호
    • /
    • pp.465-474
    • /
    • 2019
  • Let ${\mathbb{Z}}$ be the ring of integers and ${\mathbb{Z}}[X]$ (resp., $h({\mathbb{Z}})$) be the ring of polynomials (resp., Hurwitz polynomials) over ${\mathbb{Z}}$. In this paper, we study the irreducibility of Hurwitz polynomials in $h({\mathbb{Z}})$. We give a sufficient condition for Hurwitz polynomials in $h({\mathbb{Z}})$ to be irreducible, and we then show that $h({\mathbb{Z}})$ is not isomorphic to ${\mathbb{Z}}[X]$. By using a relation between usual polynomials in ${\mathbb{Z}}[X]$ and Hurwitz polynomials in $h({\mathbb{Z}})$, we give a necessary and sufficient condition for Hurwitz polynomials over ${\mathbb{Z}}$ to be irreducible under additional conditions on the coefficients of Hurwitz polynomials.