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THE ARITHMETIC OF CARLITZ POLYNOMIALS
SUNGHAN BAE

ABSTRACT. Some interesting properties of Carlitz cyclotomic poly-
nomials analogous to those of classical cyclotomic polynomials are
given.

0. Introduction

The analogies between number fields and function fields have many
interesting aspects in the recent development of number theory. The
Carlitz polynomial ppr(X) plays a very important role in the study of
function fields as does the equation X™ — 1 in the study of number
fields. The cyclotomic polynomial ®,,(X), which is a certain factor of
X™ — 1, has been studied for a long time.

One can define the Carlitz cyclotomic polynomial ®5s(X) as a fac-
tor of the Carlitz polynomial pps(X) in a similar way. In this article
the resultant of Carlitz cyclotomic polynomials is calculated explicitly,
and criterions for the reducibility or solvabilty of a Carlitz cyclotomic
polynomials modulo certain ideals are given. Finally an analogue of the
theorem of Bang and Zsigmondy on the primitive factors of the value
BT pui( £), which can be thought as the analogue of the numbers
a™ —b™, is given. The results and proofs here are very similar to those
in the classical case replacing integers by polynomials. The main dif-
ference arises from the fact that there can be more than one irreducible
polynomial with the same absolute value at infinity.

Let F4[T] be a polynomial ring over a finite field Fy, where ¢ is a
power of a prime number p. Throughout the paper the letters A, B
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denote polynomials, M, N, D monic polynomials, and P, () monic irre-
ducible polynomial in F,[T]. The greatest common divisor (M, N) is
defined to be the monic generator of the ideal generated by M and N.

1. Preliminaries

Let p be the Carlitz module, that is, p is the rank 1 Drinfeld module
on F,[T] defined by
pr(X)=TX + X9.

For a polynomial N in F,[T) a primitive N-th root An of p is defined to
be a root of pn (X) which is not a root of pas(X) for any proper divisor
M of N. Let ®5(X) be the minimal polynomial of any primitive N-th
root of p over Fy(T). Let ¢(IN) denote the Euler phi function, that is,
the number of polynomials which are prime to N and have degree less
than deg N. Then deg ®n(X) = ¢(N).

PROPOSITION 1.1. ([3], Proposition 1.2)

a) pn(X) = [Ipv @o(X).
b) If P is a monic irreducible polynomial of degree d in F4[T'], then

a-1_4

Bp(X) =P+ A X9 oo Ag 1 X914 x0T
with A; € Fg[T'] and P | A; for every i. Moreover,
& pr(X) = Bp(ppri(X)).
c) If P;’s are distinct irreducible polynomials in Fy[T'|, then
Ppri..prs (X) = ®p,..P, (Pplfl-l...p;s—l(X))-
d) If P{ N, then
Bpen(X) = ®n(ppe(X)) / En(ppe-1 X).
IfP| N, then
$pen(X) = Bn(ppe(X)).

D
&) @n(X) = [Tpyy (ow/p(X))*”
where u is the Mobius function.
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COROLLARY 1.2.
a) ®n(X) is a polynomial in X971 with coefficients in Fy[T] for
deg N > 1.

b)
By (0) = P if N is a power of a prime P
MP 711 otherwise.
c)
Bpen(X) = On(X)¢P) (mod P) ifPtN
PENIEI= @n(X)7*" (mod P) ifP|N.
d)
PryR(X)
S (pr(X)) = if every prime factor of R divides N,
NIPR v (ps(X))@np(ps(X))

if R= PS and P{ N for some prime P.

2. Resultant of cyclotomic polynomials

For two polynomials F' and G in one variable X with coefficients in
Fo(T), we write R(F,G) the resultant of F and G. The fundamental
properties of R(F,G) are

ProprosITION 2.1. ([1], §2) Let F(X) = an[[i= (X — ax), and
G(X) = b [[j=1(X — B;). Then we have

a) R(F(X),G(X)) = apb}, [Ti—y [T721 (0 — By),

b) R(F(X),G(X)) = (-1)™R(G, F),

¢) R(F(X),G(X)) = b7, [T7L, F(B))

d) R(F(X),G(X)H(X)) = R(F(X),G(X))R(F(X), H(X)),

e) F(X) and G(X) have a root in common if and only if
R(F(X),G(X)) =0.

Thus we see easily that R(®1(X),®m(X)) = &m(0) and
R(®m(X), 2N (X)) = R(PN(X),®m(X)) for M # N.
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THEOREM 2.2. (cf; [2], Theorem 1) Let a and b be elements in an
extension field of Fo(T). Then we have

(5)2%
R(@u(a+X),on(b+ X)) = [] @a (op(a-b)" = *3,
D|IN
where D' = (M, D).

Proof. Denote by Aps a primitive M-th root of p. Then all the roots
of &pr(a+X) = 0are pg(Ap)—a, for (K, M) =1and deg K < deg M.
Then

R(@um(a+ X),pp(b+ X))

= H (pp(pr(An) +b—a)) (by Proposition 2.1, ¢)
(K,M)=1,deg K<deg M

= H(PDK()\M) + pp(b—a))

=| II (pax(ry)+pp(d-0a) ﬂD)
(K, %)=1
= (3.3 (oo(b—a) "
Thus
R(@m(a+X),on(b+ X)) = ] R(®um(a+X),pp(b+ X)) B

DIN
n($) 2%
= I 2y (on(b-a)" "B,

D|N O

COROLLARY 2.3. (cf; [1], Theorem 2)

R(®m(X),®on (X)) = H Pr(N/D)$(M)/$(P*)
D,P

where D | N and P is a prime such that M/(M,D) = P*,a > 1.
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Proof. This follows from Theorem 2.2 and Corollary 1.2, taking a =
b=0. O

COROLLARY 2.4. (cf; [1], Theorem 3) If degM > degN > 0
and (M,N)=1, then R(®u(X),®n(X))=1.

ProposITION 2.5. (cf; {1], Theorem 4) If degM > degN > 0
and (M,N)#1, then

peN) if M/N is a power of P,
1 otherwise.

R(@um(X),on (X)) = {

Proof. The proof is exactly the same as the proof of [1] Theorem 4,
and we omit the proof. However we note that in the proof of [1],

Theorem 4 d’ should range through the square free divisors of n’, not
of k'n/. a

COROLLARY 2.6. (cf; [9], Satz 2) Let M = P°N and A be a prim-
itive M-th root of p. Put ¥(P¢) to be ¢(P¢) if P { N and g°d9¢¥
otherwise. Let g(X) € F,[T|[X] be defined by

On(X) = Bu (X)) + Pg(X).

Then g()) is a unit in F[T][A].

Proof. The existence of g(X) follows from Corollary 1.3. Then the
result follows from Proposition 2.1, e) and Proposition 2.5. O

Now we will compute the resultant R(®p(pr(X)), ®n(ps(X))) for
some monic polynomials R and S. For this we need the following notion
of order of an element of an F,[T]-module. Let M be an F,[T]-module,
and « be an element of M. We define the order ord(a) of a to be the
monic generator of the ideal Ann(a), the annihilator of a. Then, as in
abelian groups, we have;

LEMMA 2.7. Let A € F4[T] be monic. Then we have

_ _ord(@) _ [4 ord(a)]
ord(Aa) = (A,o'r'd(a)) = A ’
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where (A, B) denotes the greatest common divisor of A and B, and
(A, B] the least common multiple of A and B.

Now viewing the algebraic closure Fo(T) of Fo(T) as an Fy[T]-
module via p, we have

PROPOSITION 2.8. (cf; [6], Lemma 1) For monic polynomials A and
B, we have

®a(pB(X)) = IT & m(X).
[M,B]=AB,M monic

For two monic polynomials A and B in F,[T] we define < A,B >
by
<AB>= [ Pr@4B,
Pwp(A)>0

where vp(A) is the P-adic valuation of A. Then following the same
lines as in [6] taking Proposition 2.7 into account, we get

THEOREM 2.9. (cf;[6], Theorem 17) Let M, N, R and S be monic
polynomials in F,[T]. Let

o_ (MR NS
" \<M,R>"<N,S >
and for each irreducible polynomial P, let u(P) = vp((MR,NS)) —
vp(< M, R >), v(P) = vp((MR,NS)) —vp(< N,S >). Then

R(®m(pr(X)), @n(ps(X))
(0

if<M,R>|NSand < N,S >| MR,

u(P)deg P _deg G

P¢((MR,NS))9¢—“,7@)—)—3WT
if < M,R>| NS and (= 3555 = P°
v(P)deg P _deg G

pHMENS) ey ey
if <N,S>| MR and (e = P°

. otherwise.
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deg RS

REMARK. The term (—1)#(M)é(N)q disappears in our case be-
cause the exponent is always even for odd characteristic, and —1 = 1
for even characteristic.

3. Reducibility

In this section we discuss reducibility properties of Carlitz cyclo-
tomic polynomials modulo certain ideals. We begin with the reducibil-
ity of the polynomial ®s(pr(X)).

PrOPOSITION 3.1. (cf;[7], Theorem 1) ®ar(pr(X)) is irreducible

over F, [T if and only if every prime factor of R is also a prime factor
of M.

Proof. This follows easily from Corollary 1.4. d
LEMMA 3.2. Let M be a monic polynomial in F4[T)]. The group

U = (F,[T}/M)* of units is a cyclic group if and only if one of the
followings holds;
i) Mdis an irreducible polynomial P(T), in which case U ~ Z/
(" —1).
ii) ¢ = p a prime number and M = P(T)? with deg P(T) = 1, in
which case U ~ Z/(p(p — 1)).
ili) q = 2, besides i) and ii), we have, with P(T) a monic irreducible
polynomial of degree d > 1,

(a) M = T(T + 1), in which case U is trivial,
(b)) M = T(T + 1)?, or, T?(T + 1), in which case U ~ Z/2
()M =T3, (T +1)3, T(T +1)3,or (T +1)T?3, in which case U ~ Z/4,
(d) M = TP(T), (T +1)P(T),or T(T + 1) P(T),
in which case U ~Z/(2% —1),
() M = T*P(T), (T + 1)?P(T), THT + 1)P(T), or T(T + 1)2P(T),
in which case U ~ Z,/(2(2% — 1)),
(f) M = T3P(T), (T + 1)3P(T), T3(T + 1) P(T), or T(T + 1)3P(T),
in which case U ~ Z/(4(2% — 1)),
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Proof. It is clear that if one of i), ii) and iii) holds, U is cyclic. Now
suppose that U is cyclic. Assume that M is a power of an irreducible
polynomial P(T), say, M = P(T)* with deg P(T) = d. If s = 1, then
U is cyclic. Now assume that s > 2. Let a be a primitive root modulo
P(T). Then there is a primitive root modulo P(T)* of the form

a+ P(T)A(T)

for some polynomial A(T'). Let ¢ = p", where p is a prime number.
Then we must have

(a+ P(T)A(T)P*-Dr ™7 21 mod P(T),

since a + P(T)A(T) is a primitive root. But

rd(s—1)—1

(a+ P(T)A(T))®- D™ =1 _ p(T)? B(T),

for some polynomial B(T). Hence we must have

prd(s—l)—-l <s,
which implies that s < 3 since 2°°2 > s for s > 3. For s = 2, we
have p"@~! < 2 which implies that rd = 1 and we get ii). For s = 3,
we have p?"¥~1 < 3 which implies that rd = 1 and p = 2. If M is
not a power of a prime, then we must have ¢ = 2. For ¢ = 2 and
deg P(T) = 1, (F2[T)/P(T)®)* is trivial, Z/2, or Z/4 if s =1, 2, or 3,
respectively. Now the result follows because the only polynomials of
degree 1 in Fo[T] are T and T + 1. O

It is known from [8] that the Galois group of the cyclotomic polyno-
mial ®pr(X) over Fo(T) is (Fg[T'}/M)*. Thus following [7] by taking
the above lemma into account, we get;

PROPOSITION 3.3. (cf; [7], Theorem 3) ®ps(pr(X)) is reducible
modulo Q for every prime Q in F4[T), except in the following cases:
i) M=1land R=1,
ii) M = P(T) and R =1 for some prime P(T).
iii) ¢ = p, a prime number and RM = P(T)?, M # 1 with
deg P(T) = 1.
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iv) ¢ =2 and (R, M) is one of the following;
(T,T), (T,T), (T+1, (T+1)?), (T+1)2, T+1), (T,T(T+1)),
(T+1,T(T+1)), (T,TXT +1)), (T, T(T+1)), (T+1,T(T+
1)%), (T + 1) T(T + 1)), (T,TP(T)), (T,T(T + 1)P(T)),
(T + 1,(T + )P(T)), (T + 1,T(T + 1)P(T)), (T,T*P(T)),
(T%,TP(T)), (T,T*(T + VYP(T)), (T?,T(T + 1)P(T)), (T +
1,(T + 1)2P(T)), (T +1)%,(T + 1) P(T)),
(T+1,T(T +1)2P(T)), (T +1)%,T(T + 1)P(T)),
where deg P(T') > 1.

Now let K be a finite extension of Fy(T') and Ok be the integral
closure of Fo(T] in K. We will give criterions for the solvability of the
equation

®y(X)=0 moda

for some ideal a of Ok. By the Chinese Remainder Theorem we may
assume that a = g° for some prime ideal q. Let f be the inertial
degree of q in K/F4(T). We need the following facts whose proofs are
straightforward.

LEMMA 3.4. Let Q be the monic irreducible polynomial generating
the ideal q NF4[T).
i) Let M be a polynomial in F4[T). Then Q¥ =1 mod M, if and
only if q splits completely in K(Apr).
ii) Ok/q with F4[T)-module structure via p, is isomorphic to
Fo(T)/(Q — 1) with usual F,[T]-module structure.
iii) Let 8 € Ok. Then

pQ(b—nf(Qf_l)(ﬂ) =0 mod g°.
In fact, pge-1(gs—1)(8) =0 mod q°.

THEOREM 3.5. (cf; [11], Theorem 2.1) Suppose that M = P{*Pg2 ...
P?r with a; > 0 and deg P; < deg P;..;. Assume that we have chosen
P; so that a, is maximal among a;’s where deg P; = deg P,. Assume
further that a, > f, and that P, is unramified in K. Let My = 1—,1:{:[,—.
Suppose that, if My is nonconstant, Ay, ¢ K. If M = P{* Pg? with
P, = P, — 1, we also assume that \ Pe2 ¢ K. If g = 2, we assume that
deg P, > 2. Then the following are equivalent;

i) ®m(B) =0 mod g® for some 3 € Ok.
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ii) Either q splits completely or is ramified in K(Aps). In the latter
case, q | P, and q splits completely in K(\p,) and b =1, or
M = P""P;? with P, = P, — 1, q | Py, q splits completely in
K(Apg2), and b=1.

Proof. Assume that ®p(8) =0 mod . Let D = P{*P;%... P €
F,(T] be the order of 8 in Ok/q® as F,[T]-module via p. Then D |
Q®-1(Qf — 1) by Lemma 3.4. If P; #Q for any j =1,2,...,r, then
D divides Qf — 1. If ¢; < a; for some 7, then let H = ;(;IJ"[TC—]—)- Then

‘ 3

pu(B) _ & — b
=2u(B) I @r(B=0 modq.
,DH(,B) R#M,P;j+llR

But since py(3) =0 mod ¢°, we have

pu(B) _ Pylea(B) M b
pa(B)  pu(B) mod 4.

H

Thus Q | P; which is a contradiction, so D = M. Hence Qf —1=1
mod M, and so q splits completely in K(Aps).

If Q; = P; for some j, the as before ¢ = ay for all k # j. If deg P; <
deg Py, then Q] = P/ =1 mod [];.; Pg*. Thus deg P > degP{ >
deg P?r, which is a contradiction to the assumption that a,. > f. Hence
deg P; = deg P,. If j = r, we easily get q splits completely in K (Apy,).
If 5 # r, then from the preceding argument, we must have Pf =1
mod [], .. Pg*, which can happen only whenr =2, j =1and f = a,.
That is, M = P{"* P}* with deg P; = deg P,, and P{* — 1 is divisible
by Pg2. But then P®2 —1= (P, - 1)(P* * +---+1), b =P, - 1.

We know that

pm(B) = pp, (P (B))
= Pr{pp (B) + (o (8)7} + (o (8))*

for some v € Og. Since P, is unramified in K, we have v4(FP,) = 1.
Hence if vq,(p 2 (8)) > 0, then we have

vq(one(8)) = vs, (o2 (8)) + 1

deg Pr
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unless ¢ = 2 and deg P = 1. Then the rest of the proof is almost the
same as in the classical case. But we must note that the condition that
P, is unramified in K/Q is necessary in the proof of Theorem 2.1 of
(11] too. a

The remaining case is that ¢ = 2 and deg P, = 1, that is, essentially
M is equal to T (T + 1)*2 with 0 < a; < aa.

THEOREM 3.6. Let q=2and M =T% (T +1)* with0 < a; < as.
Assume that Ars:; ¢ K ifa; > 1 and A\(p41)e: ¢ K ifaz > 1.

Ifaz =1, then ®p(X) =0 mod ¢° always has a solution.

Ifa; > 1,and T and T + 1 are unramified in K, then the followings
are equivalent;

i) ®m(B) =0 mod q° for some B € Ok.

ii) Either q splits completely or is ramified in K (\pr). In the latter
case, q| T (q | (T + 1), respectively) and q splits completely in
K(A1+1)e2) (K(A7e1), respectively) and b= 1.

Ifa; =0, ag > 1, and (T + 1) is unramified in K/F,(T), then the
followings are equivalent;

i) ®3(B) =0 mod q° for some B € Ok.

ii) Either q splits completely or is ramified in K(Aps). In the latter
case, q | (T'+ 1), and b= 1.

Proof. The first assertion follows from the fact that ®p(p41)(X) =
X +1. Let q | T and prei(r41)e2(8) = 0 mod q. Then v4(B3) > 0.
Thus vg(pgae1-1(741)e2(6)) > 1 if a; — 1 > 0. Hence if a3 > 1,

ve(pm(B)) = vq (P_I\Ti (8)) +1.

Now the second assertion is exactly the same as Theorem 3.5. The
method just given works for the third assertion. (]

COROLLARY 3.7. Let N = Q'l’l ng .-+ Q% for distinct irreducible
polynomials in Fy[T). Suppose that ¢ > 2 or deg P, > 2 in case ¢ = 2.
Then the following are equivalent;

i) ®pm(A) =0 mod N for some A € F,[T).
ii) =1 mod M orQ;=P.=1 mod My and b= 1.

Similar arguments give the following variant of Theorem 3.5.
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THEOREM 3.8. Notations are as in the Theorem 3.5. Suppose that
g > 2 and all the P,’s are unramified in K and that Aps: ¢ K, for each

i. Then the following are equivalent;

i) ®p(B) =0 mod q° for some B € Ok.
ii) Either q splits completely or is ramified in K (\pr). In the latter
case, q | P; for some i, q splits completely in K (X 1 ) and b = 1.
Pt

k3

4. Primitive Factors

In this section we consider the function field analogue of the equation
X™ —Y™. For a polynomial M of degree m in F4[T’], we define

Pu(X,Y)=Y" pu(X/Y),
Om(X,Y) =Pu(X,Y)/X,

and
Fu(X,Y) =Y*Me, (X/Y).

REMARK. 1. If we replace ®p/(X) by Fm(X,Y) and ppm(X) by
Pu(X,Y), Proposition 1.1 also holds.
2. One can think pp(X) as an analogue of the classical cyclotomic
polynomial X™—1. Thus Pp(X,Y) (resp. Qum(X,Y)) can be thought
as an analogue of the equation X™ — Y™ (resp. (X" -Y")/(X -Y))
of the classical case, since X™ — Y™ = Y"((£)" - 1).

PROPOSITION 4.1. Let M and N be two monic polynomials in Fo[T)|
of degree m and n, respectively.

a)
Pun(X,Y) = Pu(Pn(X,Y), YT ) = Pn(Pu(X,Y),Y?T),
and
QN (X,Y) = Qu(XOn(X,Y),YT)QOn(X,Y).
Thus we have

Pu(X,Y) | Pun(X,Y) and Qu(X,Y)|Qmn(X,Y).
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b) If m>n, then
Pusn(X,Y) =Py (X,Y)+ YT ~TPy(X,Y),
and
Oman(X,Y) = Ou(X,Y) + Y~ Qn(X,Y).
c)

[1 Purse(X,Y) = PYr(X,Y) - Y@ DD xa-1py (X, Y),
ceF,

and

IT Qur+e(X,Y) = Q3(X,Y) - Y@ =00 Q,1(X,Y).
cely

Proof. The properties for Q follows from those of P. a) follows
from the facts that ppn(X) = pm(pn(X)) and Pn(X,Y) =
Y2 pn(X/Y). b) follows from ppr4n = par+ pn, ¢) follows from b).O0

Pun(A,B) i

PROPOSITION 4.2. If Pp(A, B) is prime to N, then Pu(AE) 18

prime to Pa(A, B).
Proof. By Proposition 4.1, a)

Pun(4A, B)

— qm+n_qm
Pu(A D) = NB mod P (A, B),

where m = deg M, n = degN. Since (B,Ppy(A,B)) = 1 from the
definition, we get the result. |

PROPOSITION 4.3. (cf; [12], P1.2) Let P denote a monic irreducible
polynomial.

a) If (M,N) = D, then

(Pm(A, B),Pn(A,B)) = Pp(A4, B),
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and
(Qm(4,B),9n(A,B)) = Qp(4, B).

b) [Ipv Qr(A,B) divides Qn(A,B).

c) (QN(A,B),A) = (N’A)

d) If P¢ || A, and N = P"M with P{ M, then P**" || Pny(A, B).

e) If P | A, then P¢ || N if and only if P® | Qn(A,B). In
particular, if P | A, then P?t Qp(A, B).

Proof. a) follows from the methods of [10] using Euclidean algorithm
and b), c) of Proposition 4.1. b) is an easy consequence of a). For c),
let

pN(X) = z C; X9
1=0

with Cp = N. Then

On(A,B) = Z C; Aqi..qud—qi
= Cy BTl modA.

Thus (Qn(A, B),A) = (N, A), since (4,B) = 1. Now d) follows
from ¢) and e) from d). d

Now we let A and B be two relatively prime polynomials in F,[T7],
and N a polynomial of degree n > 0. A prime divisor of Pyx(A, B),
which is prime to Pjs(A, B) for all divisor M of N not equal to N,
is called a primitive factor. Then we have the following analogue of
Euler’s.

PROPOSITION 4.4. (cf; [4], Theorem I, [12], P1.4) Let P be a monic
prime in F,[T). Then the followings are equivalent.
i) P is a primitive factor of Pn(A, B).
ii) P|Fn(A,B) and P=1 mod N.
iii) P|Fn(A,B) and P{N.
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Proof. Let P be a primitive factor. Then P {P;(A4, B) = A. Hence
P { B also. Choose C € Fy[T] so that A= BC mod P. Then

Pn(A, B) = BY py(BC/B) mod P
= B pn(C) mod P.
Since (B,P) = 1, P must divide py(C). It is well-known that P |
pp—1(C). View M = F([T]/(P) as an F,[T]-module via p. From the
primality, ord(C) = N in M, hence N must divide P — 1. Thus i)
implies ii). ii) implies iii) is clear. The proof that iii) implies i) is
exactly the same as the proof of (P1.4), [12]. O

Now let Pn(A,B) = Pr™ --. P_'* be the factorization of Py, with
Py,... P, all distinct prime primitive divisors of Py. Put

Pn(4,B) =]] P,
i=1

and call P(N) the arithmetic primitive factor of Px. From Proposi-
tion 1.1, e), we have

fN(X,Y) = H PN/D(X’Y)”(D)7
DIN

and so by the Mobius inversion formula,

Pn(X,Y) = ] F~(X,Y).
N'|N

We call (A, B) the algebraic primitive factor of Py(A, B). Let

_ 'FN(A’ B)
“= Pn(4,B)

THEOREM 4.5. (cf; [4], Theorem IV) If degN > 0, then w = 1,
unless Py/(A,B) =0 mod P, where N = P*N', and Pt N’. In the
latter case, if q is odd, w = P, and if q is even, w = P(P — 1) when
(B,N)=1, N = P(P—1) with P, P—1 primes, and w = P otherwise.
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Proof. Note that

adegP)

fN’('PP"‘,Bq

fN(A, B) = FNI(,PPO‘_I’Bq(a—l)degP)’

o deg P

if N = P*N’ with P{ N’. Since Ppa = A? mod P, we have

o deg P a deg P

]'-N/(Ppa,Bq ) = ]:N' (A, B)q mod P.

Now one can follow the proof of [4], Theorem IV by replacing V (n) by
Pn and F(n) by Fn. However the fact that P =1 mod N’ implies
only that deg P > deg N'. If q is odd, such a prime P is unique. When
q is even, then there can exist another prime @ so that N = PQ and
Q = P — 1. In this case, Fp_1(4,B) = B?* -1 — 1 mod P and
Fp(A,B) = B*"*"~1_1 mod (P —1). Thus Fp_; =0 mod P and
Fp =0 mod (P —1) if and only if (B, N) = 1. The rest of the proof
is the same as that of Theorem IV of [4]. ]

LEMMA 4.6. Writen = deg N, a = deg A, and b = deg B. Then, if
q>2,

aq™, ifa>b
degPn(A,B) =< bg" +q"t* %1 if0<b-a<n
bg"+n+a—>b, ifb—a>n.

Proof. Write Py = Z;;O A,-Aqi B9"~9". Then we know from Propo-
sition 1.1 of [7] that deg A; = (n —i)q*. Thus

r; = deg A;AT BT 9 = (n+a—b—1i)q" + bg".
Consider the function f(z) = (n+a — b— z)q® + bg™. f(x) attains its

maximum at t =n+a — b — Togq" Now an easy calculation gives the
result. O

For the case ¢ = 2 we need the following lemma.
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LEMMA 4.7. Let pp«(X) = ial(.k)Xqi. Then
agk) =79 (k=9 4 74 ¢=)-0"" | Jower terms.

Hence for a monic polynomial N of degree n write pn(X) =Y a; X q
we have _ _ .
a; =T9 (™9 4 T7 (n=9)-4"" | Jower terms.

Proof. Easy induction on k gives the result. (]

LEMMA 4.8. Let g = 2. Then

a2®, ifa>b+1
degPn(A,B) = { b2" 4 2nta—b-1 _gnta=b=3" jfg<p—-a<n—2
b2"+n+a—b, ifb—a>n-—1

Proof. The difference from the proof of Lemma 4.6 is that % <
log2 < land that r, k1 =7rppk2for0<k=b—a<n-—1. But

Lemma 4.7 fills the gap. a

We want to know whether Pn(A, B) possesses a primitive factor
other than units if deg N > 0. To do this it suffices to show that
degPn(A,B) > 0.

PROPOSITION 4.9. Suppose that ¢ > 2. We have
deg Fn(A, B) > n,

except the following cases
i) n=1 and a = b =0, in which case deg Fy =1,
ii) n=2, N = P? and a = b =0, in which case deg Fn = 2,
iii) n = 2, N = PQ a product of distinct primes, a = b = 0, in
which case deg Fn = 1.
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Proof. From e) of Proposition 1.1 deg Fy = > #(D) deg Py. If
a > b, then from Lemma 4.6 we see that deg Fxy = a¢(N). Sincea > 0,
ad(N) > (g — 1)" > n, as desired. Now assume that b > a. Then

deg Fn(A, B)

= u(D)degPy (4, B)
DIN

=" u(D)(bglee B 4 gles Bra-t-1y
D|N

+ ) u(D){bg"ED +deg %
D|N,deg %Sb—a

+a—b— queg & _ qdeg %+a—b—1}
= (b+ ¢ " H$(IV)

N
+ Y. u(D)(deg pta-b—g'e Bra-b-1),
D|N,deg %Sb—a

For D # N and deg%+a—b§0, we have
N N 1
deg—= +a—b—ql8Dte bt < p_g 14—,
deg | .
and for D = N,
N deg & +a—b-1 1
— —-b— b— —.
ldegD+a b— gD | < a+q
Thus

N cx N g b
> #(D)(deg5+a—b—ng'>+ >
D|N,deg%§b-—a

<(b-a-1+ 3)(number of monic divisors of N) + 1

1
S(b—a—1+a)2"+1.
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Then
1
deg FN(A4,B) > (b+¢* " N(g-1)"—(b—a—1+ 5)2" -1
>h+g " —(b—a-1+ %)2" -1
1
- -(1-¢*"}2" -1
q
>(1- 1)2” -1
q

= {(1+a)

But(l—%)2"—1<nonlyifn=lorn=2,q=3. For n = 1,
deg FN(A,B) = (¢ — 1)b+ 1, so we get i). Now assume n = 2 and
q=3. If N = P a prime, then
9%+3—a, ifb—a=0
deg FN(A,B)=¢ 9+1—aqa, ifb—a=1
9%+2—b, ifb—a>2.

If N = P2, then
6b+2, ifb—a=0

A =
deg Fn (4, B) {6b+1, ifb—a> 1.

If N = PQ a product of distinct primes, then
3b+1+a, fb—a=0o0rl
d A,B) =
e Fn(4 B) {41; ifb—a>2
Therefore we get the result. g

Now we can get easily from Proposition 4.7 and Theorem 4.5 the
following analogue of the theorem of Bang and Zsigmondy.

THEOREM 4.10. (cf; [4], Theorem V) Suppose that ¢ > 2. If
deg N > 0, then Pn(A, B) possesses at least one primitive factor other
than units, except in the case g = 3, N = (T'+ o)(T + a+ 1), and
A= =1, B=+1. In this case

P(T+a)(T+a+1)(:t17 il) = :t(T +a+ 1)2(T +ta-— l)a
and

’P(T_;.a)(:':l, :}:1) = :i:(T +a+ 1), P(T+a1)(i1, ﬂ:l) = :t(T +a-— 1).
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REMARK. When ¢ = 2, above method works for b —a < —1 or
b—a > n— 2. However we do not know in general because of the
indeterminacy for the case b — a =n — 2 in Lemma 4.8.

References

(1] Apostol, T. M., Resultant of Cyclotomic Polynomials, Proc. Amer. Math. Soc.
24 (1970), 457-463.

2] , Resultant of Cyclotomic Polynomials Fp,(az) and Fp(br), Math.
Comp. 29 (1975), 1-6.

[3] Bae, S. and Hahn, S., On the Ring of Integers of Cyclotomic Function Fields,
Bull. of KMS 29 (1992), 153-163.

[4] Birkhoff, G: D. and Vandiver, H. S., On the integral divisors of a™ — b™, Ann.
Math. 5 (1904), 173-180.

[6] Carlitz, L., A Class of Polynomials, Trans. Amer. Math. Soc. 43 (1938), 167-
182.

[6] Cheng, C. C., McKay, J. H., and Wang, S. S., Resultants of Cyclotomic Poly-
nomials, Proc. Amer. Math. Soc. 123, (1995), 1053-1059.

[7] Golomb, S. W., Cyclotomic Polynomials and Factorization Theorems, Math.
Monthly 85 (1978), 734-737.

[8] Hayes, D., Ezplicit Class Field Theory in Rational Function Fields, Trans.
Amer. Math. Soc. 189 (1974), 77-91.

[9] Liinenburg, H., Resultanten von Kreisteilungspolynomen, Arch. Math. 42 (1984),
139-144.

[10] Méller, K., Untere Schranke fiir die Anzahl der Primzahlen, aus denen z,y, z
der Fermatschen Gleichung =™ + y™ = 2™ bestehen muss, Math, Nachr. 14
(1955), 25-28.

[(11] Mollin, R. A., On the Cyclotomic Polynomials, Journal of Number Th. 17
(1983), 165-175.

[12] Ribenboim, P., Catalan’s Conjecture, Academic Press, 1994.

Department of Mathematics
KAIST

Taejon 305-701, Korea



