• Title/Summary/Keyword: prime modules

Search Result 79, Processing Time 0.024 seconds

MODULES WITH PRIME ENDOMORPHISM RINGS

  • Bae, Soon-Sook
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.5
    • /
    • pp.987-1030
    • /
    • 2001
  • Some discrimination of modules whose endomorhism rings are prime is introduced, by means of structures of submodules inducing prime ideals of the endomorphism ring End(sub)R (M) of a left R-module (sub)RM over a ring R. Modules with non-prime endomorphism rings are contrapositively studied as well.

  • PDF

PRIME M-IDEALS, M-PRIME SUBMODULES, M-PRIME RADICAL AND M-BAER'S LOWER NILRADICAL OF MODULES

  • Beachy, John A.;Behboodi, Mahmood;Yazdi, Faezeh
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1271-1290
    • /
    • 2013
  • Let M be a fixed left R-module. For a left R-module X, we introduce the notion of M-prime (resp. M-semiprime) submodule of X such that in the case M=R, it coincides with prime (resp. semiprime) submodule of X. Other concepts encountered in the general theory are M-$m$-system sets, M-$n$-system sets, M-prime radical and M-Baer's lower nilradical of modules. Relationships between these concepts and basic properties are established. In particular, we identify certain submodules of M, called "primeM-ideals", that play a role analogous to that of prime (two-sided) ideals in the ring R. Using this definition, we show that if M satisfies condition H (defined later) and $Hom_R(M,X){\neq}0$ for all modules X in the category ${\sigma}[M]$, then there is a one-to-one correspondence between isomorphism classes of indecomposable M-injective modules in ${\sigma}[M]$ and prime M-ideals of M. Also, we investigate the prime M-ideals, M-prime submodules and M-prime radical of Artinian modules.

ON SUBMODULES INDUCING PRIME IDEALS OF ENDOMORPHISM RINGS

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • v.16 no.1
    • /
    • pp.33-48
    • /
    • 2000
  • In this paper, for any ring R with an identity, in order to study prime ideals of the endomorphism ring $End_R$(M) of left R-module $_RM$, meet-prime submodules, prime radical, sum-prime submodules and the prime socle of a module are defined. Some relations of the prime radical, the prime socle of a module and the prime radical of the endomorphism ring of a module are investigated. It is revealed that meet-prime(or sum-prime) modules and semi-meet-prime(or semi-sum-prime) modules have their prime, semi-prime endomorphism rings, respectively.

  • PDF

TORSION MODULES AND SPECTRAL SPACES

  • Roshan-Shekalgourab, Hajar
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.95-103
    • /
    • 2019
  • In this paper we study certain modules whose prime spectrums are Noetherian or/and spectral spaces. In particular, we investigate the relationship between topological properties of prime spectra of torsion modules and algebraic properties of them.

TOPOLOGICAL DIMENSION OF PSEUDO-PRIME SPECTRUM OF MODULES

  • Hassanzadeh-Lelekaami, Dawood;Roshan-Shekalgourabi, Hajar
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.553-563
    • /
    • 2017
  • Different topological dimensions related to the pseudo-prime spectrum of topological modules are studied. An example of topological modules is introduced. Also, we give a result about Noetherianness of the pseudo-prime spectrum of topological modules.

MODULES WHOSE CLASSICAL PRIME SUBMODULES ARE INTERSECTIONS OF MAXIMAL SUBMODULES

  • Arabi-Kakavand, Marzieh;Behboodi, Mahmood
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.253-266
    • /
    • 2014
  • Commutative rings in which every prime ideal is an intersection of maximal ideals are called Hilbert (or Jacobson) rings. We propose to define classical Hilbert modules by the property that classical prime submodules are intersections of maximal submodules. It is shown that all co-semisimple modules as well as all Artinian modules are classical Hilbert modules. Also, every module over a zero-dimensional ring is classical Hilbert. Results illustrating connections amongst the notions of classical Hilbert module and Hilbert ring are also provided. Rings R over which all modules are classical Hilbert are characterized. Furthermore, we determine the Noetherian rings R for which all finitely generated R-modules are classical Hilbert.

ON SUBDIRECT PRODUCT OF PRIME MODULES

  • Dehghani, Najmeh;Vedadi, Mohammad Reza
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.277-285
    • /
    • 2017
  • In the various module generalizations of the concepts of prime (semiprime) for a ring, the question "when are semiprime modules subdirect product of primes?" is a serious question in this context and it is considered by earlier authors in the literature. We continue study on the above question by showing that: If R is Morita equivalent to a right pre-duo ring (e.g., if R is commutative) then weakly compressible R-modules are precisely subdirect products of prime R-modules if and only if dim(R) = 0 and R/N(R) is a semi-Artinian ring if and only if every classical semiprime module is semiprime. In this case, the class of weakly compressible R-modules is an enveloping for Mod-R. Some related conditions are also investigated.

ON PRIME SUBMODULES

  • AZIZI, A.;SHARIF, H.
    • Honam Mathematical Journal
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 1999
  • The height of a prime submodule and a module version of the Krull dimension are studied.

  • PDF

ON DISTINGUISHED PRIME SUBMODULES

  • Cho, Yong-Hwan
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.3
    • /
    • pp.493-498
    • /
    • 2000
  • In this paper we find some properties of distinguished prime submodules of modules and prove theorems about the dimension of modules.

  • PDF