• Title/Summary/Keyword: primary vortex

Search Result 76, Processing Time 0.031 seconds

Development of a new free wake model considering a waketower interaction for a horizontal axis wind turbine (후류와 타워의 영향을 고려한 수평축 풍력발전기 블레이드의 비정상 하중 예측을 위한 새로운 자유후류기법의 연구)

  • Shin Hyungki;Park Jiwoong;Lee Soongab;Kim Jueon
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.54-63
    • /
    • 2005
  • A critical issue in the field of the rotor aerodynamics is the treatment of the wake. The wake is of primary importance in determining overall aerodynamic behavior, especially, a wind turbine blade includes the unsteady airloads problem. In this study, the wake generated by blades are depicted by a free wake model to analyse unsteady loading on blade and a new free wake model named Finite Vortex Element(FVE hereafter) is devised in order to include a wake-tower interaction. In this new free wake model, blade-wake-tower interaction is described by cutting a vortex filament when the filament collides with a tower. This FVE model is compared with a conventional free wake model and verified by a comparison with NRELand SNU wind tunnel model. A comparison with NREL and SNU data shows validity and effectiveness of devised FVE free wake model and an efficient.

  • PDF

A Study on Vortex Shedding Characteristics of Rectangular Marine Structure With Aspect Ratio (장방형 해양구조물의 변장비에 따른 와방출 특성에 관한 연구)

  • 김진구;조대환
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.35-44
    • /
    • 1999
  • High negative pressure coefficient is formed in the corner of the bluff body structures. For many curtain wall designers this phenomena is of interest because this high negative pressure coefficient is adopted in structural calculation. The present study is aimed to investigate shedding vortex characteristics of two-dimensional rectangular prism flow. Unsteady calculation by finite difference method based upon SOLA is carried out for three aspect ratios(1:1, 1:2, 1:3) of Re=10$^4$ in viscous incompressible flow within infinite domain. Fluctuation of velocity components at various pick-up points and time variation of drag and lift coefficients are analysed by FFT method to reveal shedding vortex frequency patterns. At aspect ratio 1:1, one primary Strouhal number appears for about all pick-up points. At aspect ratio 1:2, two representative Strouhal numbers are classified by pick-up positions and their flows show two different reattachment patterns. For aspect ratio 1:3, frequency spectrum maintains multiple peaks.

  • PDF

Numerical Simulation of the Aeroacoustic Noise in the Separated Laminar Boundary Layer

  • Park, Hyo-Won;Young J. Moon;Lee, Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.280-287
    • /
    • 2003
  • The unsteady flow characteristics and the related noise of separated incompressible laminar boundary layer flows (Re$\sub$$\delta$/* = 614, 868, and 1,063) are numerically investigated. The characteristic lines of the wall pressure are examined to identify the primary noise source, related with the unsteady motion of the vortex at the reattachment point of the separation bubble. The generation and propagation of the vortex-induced noise in the separated laminar boundary layer are computed by the method of Computational Aero-Acoustics (CAA), and the effects of Reynolds number, Mach number and adverse pressure gradient strength are examined.

Phase-Locked Three-Dimensional Structures in the Cylinder Wake Observed from Cinematic PIV Data (Cinematic PIV에 의한 실린더 후류의 위상평균된 3차원 구조)

  • Sung, Jae-Yong;Park, Kang-Kuk;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.661-666
    • /
    • 2000
  • Near-wake flow field of a circular cylinder is studied by means of a cinematic PIV system with high sampling rate and large internal memory block. Experiments are conducted in a closed-cycle water tunnel system and a cross-correlation algorithm in conjunction with FFT (Fast Fourier Transform) analysis and an offset correlation technique is used for vector processing. With the help of very high sampling frequency compared to the shedding frequency, it is possible to obtain phase-averaged information of the three-dimensional wake, even though the shedding is not forced but natural. Phase-locked vortical structures observed simultaneously from the spanwise and cross-stream planes are displayed in the wake-transition regime where fine-scale secondary vortices have a spanwise wavelength or around one diameter. Spatial relations and temporal evolutions of the primary Karman vortex and the secondary vortex are also discussed schematically.

  • PDF

Horseshoe Vortices variation around a Circular Cylinder with Upstream Cavity (상류 캐비티로 인한 실린더 주위의 유동장 변화)

  • Kang, Kyung-Jun;Kim, Dong-Beum;Song, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2625-2630
    • /
    • 2008
  • Horseshoe vortices are formed at the junction of an object immersed in fluid-flow and endwall plate as a result of three-dimensional boundary layer separation. This study shows preliminary results of the kinematics of such horseshoe vortices around a circular cylinder with a cavity (slot) placed upstream to disturb the primary separation line. Through the cavity, no mass flow addition (blowing) or reduction (suction) is applied. The upstream cavity weakens the adverse pressure gradient before the cavity. With the upstream cavity, a single vortex is found to form immediately upstream of the cylinder whereas a typical two vortex system is observed in the absence of the cavity. Furthermore, the strength of the single vortex tends to be reduced, resulting from the interaction with the separated flow convecting directly towards the leading edge of the cylinder.

  • PDF

Wind pressure on a solar updraft tower in a simulated stationary thunderstorm downburst

  • Zhou, Xinping;Wang, Fang;Liu, Chi
    • Wind and Structures
    • /
    • v.15 no.4
    • /
    • pp.331-343
    • /
    • 2012
  • Thunderstorm downbursts are responsible for numerous structural failures around the world. The wind characteristics in thunderstorm downbursts containing vortex rings differ with those in 'traditional' boundary layer winds (BLW). This paper initially performs an unsteady-state simulation of the flow structure in a downburst (modelled as a impinging jet with its diameter being $D_{jet}$) using a computational fluid dynamics (CFD) method, and then analyses the pressure distribution on a solar updraft tower (SUT) in the downburst. The pressure field shows agreement with other previous studies. An additional pair of low-pressure region and high-pressure region is observed due to a second vortex ring, besides a foregoing pair caused by a primary vortex ring. The evolutions of pressure coefficients at five orientations of two representative heights of the SUT in the downburst with time are investigated. Results show that pressure distribution changes over a wide range when the vortices are close to the SUT. Furthermore, the fluctuations of external static pressure distribution for the SUT case 1 (i.e., radial distance from a location to jet center x=$D_{jet}$) with height are more intense due to the down striking of the vortex flow compared to those for the SUT case 2 (x=$2D_{jet}$). The static wind loads at heights z/H higher than 0.3 will be negligible when the vortex ring is far away from the SUT. The inverted wind load cases will occur when vortex is passing through the SUT except on the side faces. This can induce complex dynamic response of the SUT.

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.

Boundary Layer Flow Under a Sluice Gate (수직수문하의 경계층흐름)

  • 이정열
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.95-105
    • /
    • 1994
  • The boundary layer flow under a sluice gate is numerically solved by the random vortex sheet method combined with the vortex-in-cell method in a boundary-fitted coordinate system. The numerical solution shows that the boundary layer developed along the vertical sluice gate wall is the primary cause for the discrepancy in the contraction ratio between the laboratory experiments and inviscid theory; the bottom boundary layer plays much a smaller role in the discrepancy. By dimensional analysis it is concluded that the discrepancy is inversely proportional to the 3/4th power of the gate opening, as analyzed by Benjamin(1956). The results of the numerical simulation and dimensional analysis show a good agreement with experimental results obtained by Benjamin(1956).

  • PDF

Numerical Simulation of the Navier-Stokes Equations Using the Artificial Compressibility (AC) Method with the 4th Order Artificial Dissipation Terms

  • Park, Ki-Doo;Lee, Kil-Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.516-523
    • /
    • 2009
  • The artificial compressibility (AC) method for the incompressible Navier-Stokes equations in the generalized curvilinear coordinates using the primitive form is implemented. The main advantage of the AC approach is that the resulting system of equations resembles the system of compressible N-S equations and can thus be integrated in time using standard, well-established time-marching methods. The errors, which are the odd-even oscillation, for pressure field in using the artificial compressibility can be eliminated by using the $4^{th}$ order artificial dissipation term which is explicitly included. Even though this paper focuses exclusively on 2D laminar flows to validate and assess the performance of this solver, this numerical method is general enough so that it can be readily extended to carry out 3D URANS simulation of engineering flows. This algorithm yields practically identical velocity profiles and primary vortex and secondary vortices that are in excellent overall agreement with the results of the vorticity-stream function formulation (Ghia et al., 1982). However, the grid resolution have to be required to be large enough to express the various vortices.

  • PDF

ANALYSIS OF UNSTEADY OSCILLATING FLOW AROUND TWO DIMENSIONAL AIRFOIL AT HIGH ANGLE OF ATTACK (고받음각 2차원 에어포일 주위의 비정상 유동의 진동 특성에 관한 연구)

  • Yoo, J.K.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Missile and fighter aircraft have been challenged by low restoring nose-down pitching moment at high angle of attach. The consequence of weak nose-down pitching moment can be resulting in a deep stall condition. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance and safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed at high angle of attack up to 50 degrees around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.3 and Reynolds number of $10^5$. The lift, drag, pressure, entropy distribution, etc. are analyzed according to the angle of attack. The results of average lift coefficients are compared with other results according to the angle of attack. From a certain high angle of attack, the strong vortex formed by the leading edge are flowing downstream as like Karman vortex around a circular cylinder. The primary and secondary oscillating frequencies are analyzed by the effects of these unsteady aerodynamic characteristics.