• Title/Summary/Keyword: primary energy use

Search Result 236, Processing Time 0.027 seconds

An Exploratory Study of Material Flow Cost Accounting: A Case of Coal-Fired Thermal Power Plants in Vietnam

  • NGUYEN, To Tam
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.5
    • /
    • pp.475-486
    • /
    • 2022
  • The purpose of this paper is to examine the use of material flow cost accounting (MFCA) in Vietnam's coal-fired thermal power plants. This study is based on the contingency and system theories to explain the application of management tools and analyze steps of input, output, and process in manufacturing. Costs in producing process-based MFCA include material cost, energy cost, system cost, and waste management cost. The exploratory case study methodology is used to describe and answer two questions, namely "How coal flow cost is recognized?" and "Why waste in material consumption can be harmful to the environment?". By analyzing the Quang Ninh and Pha Lai coal-fired thermal power plants that are the typical plants, this paper identifies the flow of primary material in these plants as a basis for determining losses for the business. The material flow of coal-fired thermal power plants provides the basis for the use of the MFCA. The manufacturing of electrical items in these plants is divided into four stages, each with its own set of losses. As a result, some phases in the application of MFCA are suggested, as well as some other elements required for MFCA application in coal-fired thermal power plants.

The Primary Research on oil Conversion Technology of biomass by Pyrolysis (열분해에 의한 바이오매스의 유류자원화 기술에 관한 기초 연구)

  • Chio, Hyuk-Jin;Yoo, Sun-Kyoung;Oh, Sang-Woo;Lee, Seung-Guk;Lee, Seung-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • This study aims to develop an alternative energy like oil made from marine organic waste by marine products waste, spent fishing nets. There are already many commercial examples and case studies based on the petroleum industry-refuse plastic or refuse tire, however, it is rare that a research developing alternative energy from food waste and organic waste. Therefore, this study investigated the oil made from thermal decomposition under the high temperature and high pressure condition, and examined the possibility for commercial use by testing its own characteristics. A bio-oil from thermal decomposition at $250^{\circ}C$ and 40 atm was hard to remove impurities because of its high viscosity, showed lower caloric value than heavy oil, and generated various gases which were not appropriate for the use of fuel. It is noticeable that thermal decomposition was occurred at $250{\pm}5^{\circ}C$ using steam pressure, which much lower compared to the existing method of thermal decomposition, more than $500^{\circ}C$. Since the high viscosity of bio-oil, it is necessary a further study to use as liquid fuel.

  • PDF

Prospects of Stable Production Technologies for Food Crops (식량 안정생산기술의 전망)

  • Chae Je Cheon;Gang Yang Sun;Lee Yeong Ho;Nam Jung Hyeon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1999.11a
    • /
    • pp.102-144
    • /
    • 1999
  • The major problems of food crop cultivation in Korea are low yield of most crops except rice. inefficient cultivation techniques for aged farmers. and low international competibility. Therefore, development of cultivation techniques of food crops should aim the yield. quality improvement, labor reduction and production cost. The primary issue for increasing the yield of soybean, barely and wheat is to reduce the yield gap between the farmer's yield and recommended ones of experiment station. More advanced cultivation techniques needs to be developed. and/or the conventional breeding methods to be reconsidered. The newly developed labor-saving mechanized technique needs to reduce labor hours , and the cost of agricultural implements and machineries. In other words the labor-saving mechanized technique should be developed based on the improvement of total farming system as well as systemic fundamental innovation of cultural methods. The efficiency of solar energy use in food production of Korea in 1997 is as low as $0.52{\%}$ so there is much room to increase yield. It is recommendable that the concept of food Production should be changed to energy Producing efficiency Per unit area basis from volume and weight of food materials. Moreover, introduction of resonable cropping system is needed to increase yield of main crops, farmer's income, solar energy use efficiency, and decrease of land service expenditure. Current cropping system emphasized on economic crops. especially in vegetables , is not desirable for resonable use of arable land. stability of agricultural management and staple food crop self-sufficiency ratio. It is desirable to increase food crops . that are energy of carbohydrate and protein rich and land dependent crops. in cropping system. And the agronomist should develop the cultural methods to replace food crops for food self-sufficiency and stable farming management instead of economic crops in current cropping system. Low-input and environmentally-sound crop cultivation techniques, especially nitrogen-reducing culture technique which is directly related to food crop quality, also needs to be developed urgently. The extended cultivation of corn in upland and barely and wheat in lowland as a feed stuffs is recommended to prevent further decrease of food self-sufficiency ratio, which is mainly caused by the high reliance on imported feed grain. It is also considered that the calculation and presentation methods of standard agricultural income needs to be improved. The current calculation method uses unit land area of 10a regardless of crop kinds , characteristics of agricultural management and cultivation scale. So, it is apt to lead misunderstanding of farm income value. Therefore. it should show an income of average farmers for certain number of years. Research and developing system for food producing is not desirable because they are conducted currently individual crop and mono-culture basis. But actual agricultural income is usually earned by cropping system including upland and lowland. For example. the barley and wheat is usually cultivated in double cropping system. The cooperation among research institutes such as university agribusiness. government and farmers is indispensible. The public information and education on importance and consumption habit of food crops is necessary in Korean society to increase food self-sufficiency through nationwide cooperation.

  • PDF

A Minimum Energy Consuming Mobile Device Relay Scheme for Reliable QoS Support

  • Chung, Jong-Moon;Kim, Chang Hyun;Lee, Daeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.618-633
    • /
    • 2014
  • Relay technology is becoming more important for mobile communications and wireless internet of things (IoT) networking because of the extended access network coverage range and reliable quality of service (QoS) it can provide at low power consumption levels. Existing mobile multihop relay (MMR) technology uses fixed-point stationary relay stations (RSs) and a divided time-frame (or frequency-band) to support the relay operation. This approach has limitations when a local fixed-point stationary RS does not exist. In addition, since the time-frame (or frequency-band) channel resources are pre-divided for the relay operation, there is no way to achieve high channel utilization using intelligent opportunistic techniques. In this paper, a different approach is considered, where the use of mobile/IoT devices as RSs is considered. In applications that use mobile/IoT devices as relay systems, due to the very limited battery energy of a mobile/IoT device and unequal channel conditions to and from the RS, both minimum energy consumption and QoS support must be considered simultaneously in the selection and configuration of RSs. Therefore, in this paper, a mobile RS is selected and configured with the objective of minimizing power consumption while satisfying end-to-end data rate and bit error rate (BER) requirements. For the RS, both downlink (DL) to the destination system (DS) (i.e., IoT device or user equipment (UE)) and uplink (UL) to the base station (BS) need to be adaptively configured (using adaptive modulation and power control) to minimize power consumption while satisfying the end-to-end QoS constraints. This paper proposes a minimum transmission power consuming RS selection and configuration (MPRSC) scheme, where the RS uses cognitive radio (CR) sub-channels when communicating with the DS, and therefore the scheme is named MPRSC-CR. The proposed MPRSC-CR scheme is activated when a DS moves out of the BS's QoS supportive coverage range. In this case, data transmissions between the RS and BS use the assigned primary channel that the DS had been using, and data transmissions between the RS and DS use CR sub-channels. The simulation results demonstrate that the proposed MPRSC-CR scheme extends the coverage range of the BS and minimizes the power consumption of the RS through optimal selection and configuration of a RS.

A Scheme for Reuse of Residual Energy in a Multi-cell Battery System (다중전지 시스템에서 잔류 에너지의 재활용 방법)

  • Yun, Woong-Jin;Baek, Je-In
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.21-27
    • /
    • 2009
  • As portable electronic systems being used more often, it becomes a more important issue to lengthen the lifetime of the power battery of the system, for instance, by developing batteries of a higher efficiency. A simple as well as practical method to lengthen the lifetime is to use multiple batteries that are connected in parallel. But in this paper we present a new idea in using multiple batteries, with which the residual energy of the battery can be used in the sense of recycling. The idea is based on a usual phenomenon that a battery cell that has been used until its voltage has dropped below a reference level may still have some residual energy, due to which the voltage can recover when the cell takes a rest for a while. As a practical realization scheme of this idea, a multi-cell configuration method with a cell selection switch is introduced, and its feasibility has been examined by performing experimental observations on the behavior of battery discharge. It has been found that the lifetime of an Alkaline primary battery cell can be lengthened approximately by one or two hours with the proposed method.

MATERIAL RELIABILITY OF Ni ALLOY ELECTRODEPOSITION FOR STEAM GENERATOR TUBE REPAIR

  • Kim, Dong-Jin;Kim, Myong-Jin;Kim, Joung-Soo;Kim, Hong-Pyo
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.231-236
    • /
    • 2007
  • Due to the occasional occurrences of stress corrosion cracking(SCC) in steam generator tubing(Alloy 600), degraded tubes are removed from service by plugging or are repaired for re-use. Since electrodeposition inside a tube does not entail parent tube deformation, residual stress in the tube can be minimized. In this work, tube restoration via electrodeposition inside a steam generator tubing was performed after developing the following: an anode probe to be installed inside a tube, a degreasing condition to remove dirt and grease, an activation condition for surface oxide elimination, a tightly adhered strike layer forming condition between the electro forming layer and the Alloy 600 tube, and the condition for an electroforming layer. The reliability of the electrodeposited material, with a variation of material properties, was evaluated as a function of the electrodeposit position in the vertical direction of a tube using the developed anode. It has been noted that the variation of the material properties along the electrodeposit length was acceptable in a process margin. To improve the reliability of a material property, the causes of the variation occurrence were presumed, and an attempt to minimize the variation has been made. A Ni alloy electrodeposition process is suggested as a primary water stress corrosion cracking(PWSCC) mitigation method for various components, including steam generator tubes. The Ni alloy electrodeposit formed inside a tube by using the installed assembly shows proper material properties as well as an excellent SCC resistance.

Spectrum- and Energy- Efficiency Analysis Under Sensing Delay Constraint for Cognitive Unmanned Aerial Vehicle Networks

  • Zhang, Jia;Wu, Jun;Chen, Zehao;Chen, Ze;Gan, Jipeng;He, Jiangtao;Wang, Bangyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1392-1413
    • /
    • 2022
  • In order to meet the rapid development of the unmanned aerial vehicle (UAV) communication needs, cooperative spectrum sensing (CSS) helps to identify unused spectrum for the primary users (PU). However, multi-UAV mode (MUM) requires the large communication resource in a cognitive UAV network, resulting in a severe decline of spectrum efficiency (SE) and energy efficiency (EE) and increase of energy consumption (EC). On this account, we extend the traditional 2D spectrum space to 3D spectrum space for the UAV network scenario and enable UAVs to proceed with spectrum sensing behaviors in this paper, and propose a novel multi-slot mode (MSM), in which the sensing slot is divided into multiple mini-slots within a UAV. Then, the CSS process is developed into a composite hypothesis testing problem. Furthermore, to improve SE and EE and reduce EC, we use the sequential detection to make a global decision about the PU channel status. Based on this, we also consider a truncation scenario of the sequential detection under the sensing delay constraint, and further derive a closed-form performance expression, in terms of the CSS performance and cooperative efficiency. At last, the simulation results verify that the performance and cooperative efficiency of MSM outperforms that of the traditional MUM in a low EC.

Energy Efficient Cluster Head Selection and Routing Algorithm using Hybrid Firefly Glow-Worm Swarm Optimization in WSN

  • Bharathiraja S;Selvamuthukumaran S;Balaji V
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2140-2156
    • /
    • 2023
  • The Wireless Sensor Network (WSN), is constructed out of teeny-tiny sensor nodes that are very low-cost, have a low impact on the environment in terms of the amount of power they consume, and are able to successfully transmit data to the base station. The primary challenges that are presented by WSN are those that are posed by the distance between nodes, the amount of energy that is consumed, and the delay in time. The sensor node's source of power supply is a battery, and this particular battery is not capable of being recharged. In this scenario, the amount of energy that is consumed rises in direct proportion to the distance that separates the nodes. Here, we present a Hybrid Firefly Glow-Worm Swarm Optimization (HF-GSO) guided routing strategy for preserving WSNs' low power footprint. An efficient fitness function based on firefly optimization is used to select the Cluster Head (CH) in this procedure. It aids in minimising power consumption and the occurrence of dead sensor nodes. After a cluster head (CH) has been chosen, the Glow-Worm Swarm Optimization (GSO) algorithm is used to figure out the best path for sending data to the sink node. Power consumption, throughput, packet delivery ratio, and network lifetime are just some of the metrics measured and compared between the proposed method and methods that are conceptually similar to those already in use. Simulation results showed that the proposed method significantly reduced energy consumption compared to the state-of-the-art methods, while simultaneously increasing the number of functioning sensor nodes by 2.4%. Proposed method produces superior outcomes compared to alternative optimization-based methods.

Current Status and Prospect of Qauality Evaluation in Maize (옥수수의 품질평가 현황과 전망)

  • 김선림;문현귀;류용환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.107-123
    • /
    • 2002
  • This paper is intented to present a information of various aspects of quality related characteristics and standards for grades in maize. Maize is world's one of the three most popular cereal crops and a primary energy supplement and can contribute up to 30, 60, and 98% of the dairy diet's protein, net energy, and starch, respectively. Maize is also processed into industrial goods by wet or dry milling. Sweet corn is a leader among vegetable crops and its production for fresh or processing markets is a major industry in many countries. Over the years, the combined efforts of breeders and geneticists, biochemists, food scientists, and others have helped bring us to the point where we understand issues related to sweet corn quality. Traditional criteria for selecting corn hybrids have been based primarily on agronomic factors, including grain production, disease resistance, drought tolerance, and storage characteristics. Little emphasis has been placed on the quality and nutritional values of corn. Although there is widespread interest for value-enhanced corns have increased tremendously in the last five years, there is limited information available on the production and comparing the quality attributes of specialty grains with those of normal yellow dent corn. Most countries have developed national maize standards, aiming to provide a framework for trade, both internal and external. Where trading involves direct choice and price negotiation in front of the commodity, grading standards are rarely employed; quality is assessed visually and is influenced by end-use, and the price is determined more by local rather than national factors. The use of an agreed standard will provide an unambiguous description of the quality of the consignment and assist in the formation of a legally-binding contract. Standards can also be seen to protect consumers rights through setting limits to the amount of unsuitable or noxious material.

An Experimental Study for the Construction of Photocatalytic Method Concrete Road Structure (광촉매 콘크리트 도로 구조물의 효율적 시공방법에 대한 실험적 연구)

  • Hong, Sung Jae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.1-9
    • /
    • 2013
  • PURPOSES : About 35% of air pollutant is occurred from road transport. NOx is the primary pollutant. Recently, the importance of NOx removal has arisen in the world. $TiO_2$ is very efficient for removing NOx by photocatalytic reaction. The mechanism of removing NOx is the reaction of photocatalysis and solar energy. Therefore, $TiO_2$ in concrete need to be contacted with solar radiation to be activated. In general, $TiO_2$ concrete are produced by substitute $TiO_2$ as a part of concrete binder. However, 90% of $TiO_2$ in the photocatalysis can not contacted with the pollutant in the air and solar radiation. Coating and penetration method are attempted as the alternative of mixing method in order to locate $TiO_2$ to the surface of structure. METHODS : The goal of this study was to attempt to locate $TiO_2$ to the surface of concrete, so we can use the concrete in pavement construction. The distribution of $TiO_2$ along the depth were confirmed by basing on the comparison of $TiO_2$ compare by using the EDAX(Energy Dispersive X-ray Spectroscopy). RESULTS : $TiO_2$ were distributed within 3mm from concrete surface. This distribution of $TiO_2$ is desirable, since the $TiO_2$ induce photocatalysis are located to where they can be contacted with the air pollutant and solar radiation. CONCLUSIONS : Nano size $TiO_2$ is easily penetration in the top 3mm of concrete surface. By the penetration $TiO_2$ concrete can be produced with the use of only 10% of $TiO_2$, by comparing the mixing types.