• Title/Summary/Keyword: prestressed one-way slab

Search Result 8, Processing Time 0.023 seconds

Analysis of Partially Prestressed Concrete Slab without bond (부착 안된 부분 P.C 슬래브의 해석)

  • 박흥용;최익창;연준희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.13-18
    • /
    • 1990
  • This paper introduced truss model and one-way slab elastic Model to analyse flexure of unbonded prestressed concrete member. After cracking, we could determine concrete membrane depth, deflection and stress. In order to do that, an numerical example of simply supported one way slab which has non-external membrane support(s=0) is analysed. The analytical results using the analytical model were compared with several experimental results and were generally satisfied.

  • PDF

Conceptual design of prestressed slab bridges through one-way flexural load balancing

  • Arici, Marcello;Granata, Michele Fabio
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.615-642
    • /
    • 2013
  • In this paper a study on prestressed concrete slab bridges is presented. A design philosophy based on the concept of load balancing through prestressing is proposed in order to minimize the effects of delayed deformations due to creep. Aspects related to the stress redistribution inside these bridges for time-dependent phenomena are analyzed and discussed, by applying the principles of aging linear visco-elasticity. Prestressing is seen as an equivalent external load which counterbalances the permanent loads applied to the bridge, nullifying the elastic deflections due to sustained loads, and thus avoiding the related delayed deformations. An optimization of the structural behavior through the use of one-way prestressing is achieved. The determination of a convenient variable depth of slab bridges and the correspondent layout of tendons is considered as a useful means for applying the load balancing concept in actual cases of structures like long cantilevers or bridge decks. A case-study related to the slab bridges built 30 years ago at Jeddah in Saudi Arabia is presented and discussed, in order to show the effectiveness of the proposed approach to the conceptual design of prestressed concrete bridges.

A Parametric Study of Deflection Analysis of the Prestressed Concrete One-Way Slab for Serviceability Assessment (사용성 평가를 위한 프리스트레스트 콘크리트 일방향 슬래브의 처짐 변수 해석)

  • Park, Ha Eun;Kim, Min Sook;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.525-532
    • /
    • 2014
  • The purpose of this study is to analyze the deflection for serviceability assessment of the prestressed concrete one-way slab using finite element program. Proposed finite element analysis method was verified comparing with existing experimental results, and it showed a good agreement. Also, a parametric study has been conducted to analyze the influence of concrete compressive strength, eccentricity, live load, and tendon profile. The finite element analysis results were compared with hand calculation results. Deflections were decreased as the concrete compressive strength increases, eccentricity increases, and the live load decreases. The deflection of straight tendon was smallest. And regression analysis has been conducted to analyze the correlation between parameters and camber.

Flexural Behavior of MRS Continuous Joints for the Prestressed Concrete One-way Joist Slab System (프리스트레스 콘크리트 일방향 장선구조로 구축한 MRS 연속단 접합부의 휨거동)

  • Oh, Young-Hun;Moon, Jeong-Ho;Im, Ju-Hyeuk;Choi, Dong-Sup;Lee, Kang-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.148-155
    • /
    • 2010
  • The purpose of this study is to propose and evaluate the continuous joint constructed with MRS system which is utilized for floor system in the parking structures or commercial retail buildings. Four specimens were fabricated and tested to examine the structural performance of the continuous joint with different joint detailing. Structural test for the specimens was undertaken to simulate the actual stress condition of the negative moment resisting connection in the prestressed precast concrete parking structures with 8m span. Based on the experimental results, the MRS system could be designed as the ductile continuous joint governed by flexural behavior. Therefore the MRS system developed in this study would provide a superior joint behavior to conventional double-tee system when constructing monolithic joint composed of simply supported precast members.

Minimum Design Thickness of Prestressed Concrete Deck Slabs for Composite Two-Girder Bridges (강합성 2거더교 프리스트레스트 바닥판의 설계 최소두께)

  • Hwang, Hoon Hee;Joh, Changbin;Kwark, Jong Won;Lee, Yong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.183-190
    • /
    • 2006
  • Minimizing the self weight of long-span deck slabs is one of the key factors for the practical and economic design of a composite two-girder bridge. In this paper, the minimum design thickness and rebar details of prestressed concrete deck slabs for composite two-girder bridges with girder span length from 4 m to 12 m are studied based on the safety and serviceability. The bridge deck slab with minimum thickness is designed as a one-way slab considering orthotropic behavior. Then fatigue safety of the deck slab is examined. Serviceability requirements for the deck slab such as deflection and crack width limits are also examined. The result shows that rebars with diameter less than 16 mm is recommended for the improved fatigue behavior, and, for the deck slab with span length longer than 8 m, the deflection limit governs the minimum design thickness. The result also shows that, for the deck slab with span length longer than 4 m, the distribution rebar requirement in the current Korea Highway Bridge Design Code is not sufficient to maintain the structural continuity in bridge axis as expected from the deck slab with span length shorter than 3 m.

An Experimental Study on the Flexural Cracking Behavior of Partially Prestressed Concrete Slabs (부분 프리스트레스트 콘크리트 슬래브의 휨 균열 거동에 관한 실험적 연구)

  • 박홍용;연준희;최익창
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.108-115
    • /
    • 1990
  • This paper contains experimental studies on the flexural cracking behabior of PPC one-way slabs. Three post tensioned bonded PPC slabs with the same prestressing ratio and ultimate moment strength were tested. Based upon test results, this paper also presents the crack width prediction formula PPC slab. According to the crack theory developed mainly in Europe, crack width formula is given as the product of crack spacing and mean steel strain after decompression. Aaaaverage crack spacing formula is composed of many factors mainly such as concrete cover, concrete effective area in tension, sum of reinforcing bars perimeters and mixed reinforcements. In particular, it is very important to specify the bond characteristics of mixed reinforcements, since bond characteristics of PC bars are different from those of non-tensioned deformed bars. For this reason, a reduced bond coefficients for PS bars is employed in this study.

  • PDF

Optimization for Precast Prestressed Wide-U Beams with the Least Depth (최소깊이 프리캐스트 프리스트레스트 U형보의 최적화)

  • Yul Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.18-26
    • /
    • 2004
  • The cost of underground work is a dominant factor to determine the total construction fee. It is generally 2 ${\~}$ 2.5 times higher than that of above ground for building with the same height. 'A new precast prestressed framing plan for underground parking building' was suggested with the beam of the least depth - U-type beams. The depth of regular rectangular reinforced concrete beam which is currently used in the underground parking of apartments could be reduced up to 12 ${\~}$ 34cm/story due to the development of a U-beams from the optimum process. Two full scale prototype U-beams were tested in this study. It was found that the Wide U-beams in the test showed higher strength than calculated nominal and design, however need to provide temporary supports to meet the flexural moment of construction load at the simply supported state before the lopping concrete hardens.