• Title/Summary/Keyword: prestressed concrete bridge girder

Search Result 198, Processing Time 0.025 seconds

Design of P.C. Beam Bridge using High Strength Concrete (고강도 콘크리트를 사용한 P.C. Beam교의 설계)

  • 강상규;윤석구;이형준;정원기;이규정
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.446-449
    • /
    • 1997
  • The use of high strength concrete in the fabrication and construction of prestressed concrete beam bridges can result in the increase of girder spacings for standard shapes, as well as the increase of span lengths. The increase of girder spacings corresponds to the reduction of the required number of girders. This study shows that the use of high strength concrete make prestressed concrete beam bridges the economical alternative to any other bridge types. Also, this study has the purpose of giving aids to design of prestressed concrete beam. To achieve this purpose this study provides the plots resulting from research on relationships between the concrete strength of prestressed concrete beam, girder spacing and the number of strands in various span lengths.

  • PDF

Vibration analysis of prestressed concrete bridge subjected to moving vehicles

  • Huang, M.;Liu, J.K.;Law, S.S.;Lu, Z.R.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.273-289
    • /
    • 2011
  • The vibration response of the bridges under the moving vehicular load is of importance for engineers to estimate the serviceability of existing bridges and to design new bridges. This paper deals with the three dimensional vibration analysis of prestressed concrete bridges under moving vehicles. The prestressed bridges are modeled by four-node isoparametric flat shell elements with the transverse shearing deformation taken into account. The usual five degrees-of-freedom (DOFs) per node of the element are appended with a drilling DOF to accommodate the transformation of the local stiffness and mass matrices to the global coordinates. The vehicle is modeled as a single or two-DOF system. A single-span prestressed Tee beam and two-span prestressed box-girder bridge are studied as the two numerical examples. The effects of prestress forces on the natural frequencies and dynamic responses of the bridges are investigated.

An Improved Finite Element Modeling Technique for Prestressed Concrete Girder Bridges (PSC보 교량의 유한요소 모델링방법에 관한 연구)

  • 김광수;박선규;김형열
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.33-40
    • /
    • 1999
  • An improved finite element modeling technique is proposed for the assessment of load carrying capacity of partially prestressed concrete girder bridges. Based on the finite element method of analysis, shell and frame elements are used to model the slab and girders of the superstructure, respectively. In the modeling of superstructure, the emphasis is placed on the use of rigid link between the middle surface of slab an mid-plane of girder. This paper also includes the comparision of three different equations that are used in the calculation of effective moment of inertia for the partially prestressed concrete girders. Numerical analysis is performed for the unstrengthened and strengthened bridges. The obtained results are compared with those of load test for a prototype bridge. A good agreement is achieved between the numerical solutions by using the proposed method load test results.

Destructive Load Testing of Prestrissed Concrete Girder Bridge (PSC 거더교의 파괴실험)

  • Oh, Byung-Hwan;Kim Kwang-Soo;Lew, Young;You, Dong-Woo;Kim, Do-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.470-475
    • /
    • 2000
  • This research covers the resting of precast/prestressed concrete I-Girder bridge. The research was designed to examine processes for improving the condition evaluation and rating of prestressed concrete bridge. To establish procedures that allow for the full utilization of prestressed concrete bridge capacity, a 28-year old sample was loaded to failure in site. The bridge was constructed with 12 spans, and girders of each span were simply supported. At each loading stage, the deflections, reinforcement strains, prestressing wire strains and concrete strains were examined. Failure behavior was analyzed, and failure load was also evaluated. The test results wee compared to the analytical results from the non-linear finite element analysis.

  • PDF

An Experimental Study on a Narrow and High Capacity PSC Anchorage (세장한 고하중 PSC 정착장치의 실험적 연구)

  • Jeon, Yong-Sik;kang, Sang-Hoon;Jin, Kyung-Seok;Han, Man-Yup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.39-40
    • /
    • 2009
  • This study is for development the anchorage that for development and practicality a holed precast prestressed concrete girder for forming an I-type Prestressed concrete girder bridge, in which at least one hole is formed in a body portion of the I-type Prestressed concrete girder.

  • PDF

Assessment of deformations and internal forces in the suspension bridge under eccentric live loads: Analytical algorithm

  • Zhang, Wenming;Lu, Xiaofan;Chang, Jiaqi;Tian, Genmin;Xia, Lianfeng
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.749-765
    • /
    • 2021
  • Suspension bridges bear large eccentric live loads in rush hours when most vehicles travel in one direction on the left or right side of the bridge. With the increasing number and weight of vehicles and the girder widening, the eccentric live load effect on the bridge behavior, including bending and distortion of the main girder, gets more pronounced, even jeopardizing bridge safety. This study proposes an analytical algorithm based on multi-catenary theory for predicting the suspension bridge responses to eccentric live load via the nonlinear generalized reduced gradient method. A set of governing equations is derived to solve the following unknown values: the girder rigid-body displacement in the longitudinal direction; the horizontal projection lengths of main cable's segments; the parameters of catenary equations and horizontal forces of the side span cable segments and the leftmost segments of middle span cables; the suspender tensions and the bearing reactions. Then girder's responses, including rigid-body displacement in the longitudinal direction, deflections, and torsion angles; suspenders' responses, including the suspender tensions and the hanging point displacements; main cables' responses, including the horizontal forces of each segment; and the longitudinal displacement of the pylons' tower top under eccentric load can be calculated. The response of an exemplar suspension bridge with three spans of 168, 548, and 168 m is calculated by the proposed analytical method and the finite element method in two eccentric live load cases, and their results prove the former's feasibility. The nonuniform distribution of the live load in the lateral direction is shown to impose a greater threat to suspension bridge safety than that in the longitudinal direction, while some other specific features revealed by the proposed method are discussed in detail.

Finite element analysis of CFRP laminate repairs on damaged end regions of prestressed concrete bridge girders

  • Shaw, Ian D.;Andrawes, Bassem
    • Advances in Computational Design
    • /
    • v.2 no.2
    • /
    • pp.147-168
    • /
    • 2017
  • Over the past couple decades, externally bonded fiber reinforced polymer (FRP) composites have emerged as a repair and strengthening material for many concrete infrastructure applications. This paper presents an analytical investigation of the use of carbon FRP (CFRP) for a specific problem that occurs in concrete bridge girders wherein the girder ends are damaged by excessive exposure to deicing salts and numerous freezing/thawing cycles. A 3D finite element (FE) model of a full scale prestressed concrete (PC) I-girder is used to investigate the effect of damage to the cover concrete and stirrups in the end region of the girder. Parametric studies are performed using externally bonded CFRP shear laminates to determine the most effective repair schemes for the damaged end region under a short shear span-to-depth ratio. Experimental results on shear pull off tests of CFRP laminates that have undergone accelerated aging are used to calibrate a bond stress-slip model for the interface between the FRP and concrete substrate and approximate the reduced bond stress-slip properties associated with exposure to the environment that causes this type of end region damage. The results of these analyses indicate that this particular application of this material can be effective in recovering the original strength of PC bridge girders with damaged end regions, even after environmental aging.

Nonlinear Analysis of Prestressed Concrete Box Girder Bridges Using Macro Element (매크로요소를 이용한 프리스트레스트 콘크리트 박스거더 교량의 비선형 해석)

  • Oh, Byung-Hwan;Lee, Myung-Kue
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.77-87
    • /
    • 1999
  • The conventional design of prestressed concrete box girder bridges has been based on the linear elastic analyses using simplified geometric models. To overcome the restriction involved in the simplifications, a macro element for the rational analysis of prestressed concrete box girder bridges with variable cross sections is incorporated in the present analysis. Through the adoption of nonlinear material models, the behaviour of prestressed box bridges up to ultimate loading stage can be examined. The time dependent material models included in the present macro element code enable to predict the long term behaviour of prestressed concrete box girder bridges. The proposed macro element code with the nonlinear material models and time dependent routines can be efficiently used for the realistic analysis of prestressed concrete box girder bridges with arbitrary shapes.

A numerical method for evaluating fire performance of prestressed concrete T bridge girders

  • Zhang, Gang;Kodur, Venkatesh;Song, Chaojie;Hou, Wei;He, Shuanhai
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.497-507
    • /
    • 2020
  • This paper presents a numerical method for evaluating fire performance of prestressed concrete (PC) T shaped bridge girders under combined effect of structural loading and hydrocarbon fire exposure conditions. A numerical model, developed using the computer program ANSYS, is employed to investigate fire response of PC T shaped bridge girders by taking into consideration structural inherent parameters, namely; arrangement of prestressing strands with in the girder section, thickness of concrete cover over prestressing strands, effective degree of prestress and content of prestressing strands. Then, a sequential thermo-mechanical analysis is performed to predict cross sectional temperature followed by mechanical response of T shaped bridge girders. The validity of the numerical model is established by comparing temperatures, deflections and failure time generated from fire tests. Through numerical studies, it is shown that thickness of concrete cover and arrangement of prestressing strands in girder section have significant influence on the fire resistance of PC T shaped bridge girders. Increase in effective degree of prestress in strands with triangular shaped layout and content in prestressing strands can slow down the progression of deflections in PC T shaped bridge girder towards the final stages of fire exposure, to thereby preventing sudden collapse of the girder. Rate of deflection based failure criterion governs failure in PC T shaped bridge girders under most hydrocarbon fire exposure conditions. Structural inherent parameters incorporated into sectional configuration can significantly enhance fire resistance of PC bridge girders; thus mitigating fire induced collapse of these bridge girders.

Development of the Program Checking the Constructible Possibility of Prestressed Concrete Box Girder Bridges (PSC 박스 거더교의 시공성 검사 프로그램 개발)

  • 김병석;김영진;강재윤;한석희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.701-705
    • /
    • 1998
  • The objective of this study is to develop the practical program which can check the constructible possibility of prestressed concrete box girder bridges for design. Checking constructible possibility is defined as checking the interference of each elements in a PSC box girder bridge and computing the distances of each elements. To check the constructible possibility of a PSC box girder bride, bridge must be modelled using solid in three dimension. By using a 3 dimensional solid modeling system, engineers can get the photo realistic 3D viewing images of the bridge and produce FEM analytic model of it. Users can manipulate their drawings easier and take off quantity of the whole structure and its elements as well as check the constructible possibility of their PSC box girder bridges.

  • PDF