• Title/Summary/Keyword: presteaming period

Search Result 5, Processing Time 0.02 seconds

Studies on Improving Preservative Treatability of Japanese Larch Heartwood by Presteaming (증기(蒸氣) 전처리(前處理)에 의(依)한 낙엽송(落葉松) 심재(心材)의 방부제(防腐劑) 처리도(處理度) 개선(改善)에 관(關)한 연구(硏究))

  • Kang, Sung-Mo;Paik, Ki-Hyon;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.15-22
    • /
    • 1997
  • The effectiveness of presteaming for improving CCA treatability on refractory Japanese larch heartwood was investigated in this study. Presteaming was effective on improving treatability, and the extent of improvement was dependent on moisture contents of wood specimen and steaming conditions. Green wood showed higher average value in both preservative retention and penetration than dry wood, and steaming under pressure conditions also had higher treatability than steaming at atmospheric conditions. The degree of improvement for treatability was increased with the extension of steaming period. Treatability of dry wood pres teamed under pressure conditions more than 6 hours and green wood for 3 hours was similar to that enhanced by conventional incising. Presteaming green wood under pressure conditions more than 6 hours was more effective than conventional incising in improvement of CCA treatability, and resultant treatability satisfied a minimum value required for CCA-treated wood for being used at the regions of hazard class H3 and H4. In addition, an improvement of treatability by presteaming was due to an increase in permeability resulted from the degradation of hemicelluloses within aspirated pit membrane and cell wall, not the removal of extractives from pit membrane. The reduction in strength, measured as longitudinal compressive strength, due to pres teaming was related with the degradation of hemicelluloses, and was increased as steaming conditions were severe. The degree of strength reduction associated with presteaming treatment to obtain required treatability could be quantified from the relatively good relation between the increase in treatability and the decrease in strength.

  • PDF

A Study on the Effect of Accelerated Curing on 28-Days Compressive Strength of Concrete (촉진양생이 콘크리트의 28일 압축강도에 미치는 영향에 관한 연구)

  • 최세규;유승룡;김생빈
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.4
    • /
    • pp.141-148
    • /
    • 1996
  • The pulished works on Accelerated Curing Effect were generally performed around from 1960 to 1970th century for 18 to 24 hours - total curing periods. It is not possible to define the effect of temperature rise because those results were obtaine mainly by using the manually operated steam-curing tank. Thus, it may not be available to apply those data immediately on the domestic PC wall production line. The testing specimens were made from the standard mix proportion according to those of domestic PC factories to establish a basic data for the Accelerated Curing Effect. The experimental tests were conducted according to the conditions of each sub-curing periods. By comparing the results of compression tests on de-molded and 28-day water-curing specimens, we find that the most effective curing condition to obtain more than the required design strength after 28 day of water curing may be as follows: the presteaming period does not affect seriously and less than$30^{circ}C/hr$- the rate of temperature rise andless than $82^{circ}C$ - maximum temperature are necessary. It seems that post-curing procedure is very important factor to increase the effect of accelerated curing.

The study on mechanical properties of PC panel with steam curing condition (증기양생 조건에 따른 터널 PC 패널의 물리적 특성에 관한 연구)

  • Ma, Sang-Joon;Jang, Pil-Sung;Shiin, Jin-Yong;Nam, Kwan-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • Many problems exist in the current cast in place concrete lining used in domestic tunnel construction. Especially, the crack of tunnel lining brings about a social and economic problem. It has a lot of influence on stability of structure and the fine finish of lining. So enormous repair-work and reinforcement of tunnel lining could occur an running out of government's budget. In our country, there are domestic production enterprises which produce a special pre-cast concrete product, but the technical level of them is still far behind compared to developed countries. Also, optimum steam coring method is important for the production of high quality product. But there is no regulation of steam curing method in our country. This study is to investigate the properties of PC panel according to the variation of steam curing conditions such as presteaming time and rate of temperature rise. The result shows that the optimum presteaming time of steam curing method in PC panel is more than 1 hour and the desirable rate of temperature in curing chamber is about $20^{\circ}C/hr$.

  • PDF

A Study on the effect of Accelerated Curing on Hydration and Compressive Strength of Concrete (촉진양생이 콘크리트의 수화 및 압축강도에 미치는 영향에 관한 연구)

  • 김생빈;유승룡;김동신;최세규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.107-111
    • /
    • 1996
  • The testing specimens were made from the standard mix proportion according to those of domestic PC factories to establish a basic data for the Accelerated Curing Effect. The experimental tests were conducted according to the conditions of each sub-curing periods. By comparing the results of compression tests on de-molded and 28-day water-curing specimens, we find that the most effective curing condition to obtain more than the required design strength after 28 days of water curing may be as follwings; the presteaming period does not affect seriously and less than $30^{\circ}C$/hr-the rate of temperature rise and less than $82^{\circ}C$ - maximum temperature are necessary. It seems that post-curing procedure is very important factor to increase the effect of accelerated curing.

  • PDF

Evaluation of Pretreatment Moisture Content and Fixation Characteristics of Treated Wood for Pressure Treatment of Japanese Red Pine and Japanese Larch Skin Timber with ACQ, CUAZ and CuHDO (소나무와 낙엽송 스킨팀버의 ACQ, CUAZ, CuHDO 가압처리를 위한 처리용 목재의 적정 함수율 및 처리목재의 정착 특성 평가)

  • Choi, Yong-Seok;Oh, Se-Min;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.481-489
    • /
    • 2011
  • This study was conducted to evaluate the pressure treatment characteristics of Japanese red pine and Japanese larch skin timber with ACQ-2, CUAZ-2 and CuHDO-1. The effect of moisture content (MC) on preservative treatability was investigated for Japanese red pine sapwood and Japanese larch heartwood, and fixation characteristics of CCA alternatives was also evaluated. Japanese red pine sapwood, which was dried below 30 percent MC, was fully penetrated with preservatives, and minimum requirement of preservative retention for the hazard class H3 was achieved. Through measuring preservative retention gradient in Japanese red pine sapwood, it was confirmed that the retention gradient of CuHDO-1 was steeper than that of both ACQ-2 and CUAZ-2. In particular, it was intensified at a higher MCs of wood samples (25∼30%). Japanese larch heartwood did not meet the minimum requirement of penetration and retention for the hazard class H3 over the range of pretreatment MCs tested. With presteaming under $121^{\circ}C$ for 12 hours, the treatability of Japanese larch heartwood was enhanced to meet the minimum requirement for the hazard class H3. The fixation rate of copper was much more faster under drying condition compared with nondrying condition; more than 95% of copper were fixed in 3~6 days and 1 day under drying conditions in Japanese red pine sapwood and Japanese larch heartwood, respectively. After 3-week fixation period at ambient temperature, the amount of mobile copper in treated wood sample that remains available for leaching from treated wood was the highest in the wood samples treated with ACQ-2, followed by CuHDO-1 and CUAZ-2. It was proportional to the amount of copper in treating solution.