• Title/Summary/Keyword: pressurized vessel

Search Result 151, Processing Time 0.029 seconds

Enhancement of critical heat flux with additive-manufactured heat-transfer surface

  • Tatsuya Kano;Rintaro Ono;Masahiro Furuya
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2474-2479
    • /
    • 2024
  • In-Vessel Retention (IVR) is a key technology to retain the molten core in the reactor vessel during severe accidents of Pressurized-water reactors (PWRs). In order to gain the safety margin of IVR, it is crucial to enhance the critical heat flux (CHF) of the reactor vessel, which is submerged in a water pool. To enhance the CHF, we have designed and additive-manufactured porous grid plates with a 3-D printer for design flexibility. We measured the CHF for the porous grid plate on the boiling heat transfer surface and found that the CHF was enhanced by 50 % more than that of the bare surface. The CHF enhanced more with a narrower grid pitch and a lower grid height. The visual observation study revealed that the vapor film was formed at the bottom of the grid plate.

Parametric Study on the Heat Loss of the Reactor Vessel in the Nuclear Power Plant (원자력 발전 원자로 용기의 열손실 설계인자에 관한 연구)

  • Jong-Ho Park;Seoug-Beom Kim
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.827-836
    • /
    • 2004
  • The design parameter of the heat loss for the pressurized water reactor has been studied. The heat loss from the reactor vessel through the air gap. insulation are analysed by using the computational fluid dynamics code, FLUENT. Parametric study has been performed on the air gap width between the reactor vessel wall and the inner surface of the insulation, and on the insulation thickness. Also evaluated is the performance degradation due to the chimney effect due to gaps left between the panels during the installation of the insulation system. From the analysis results, the optimal with of air gap and insulation thickness and the value of heat loss are obtained The results show how the heat loss varies with the air gap width and insulation thickness. The temperature and the velocity distributions are also presented. From the results of the evaluation. the optimal air gap width and the optimal insulation thickness are obtained. As the difference between the predicted heat loss and measured heat loss from the reactor vessel is construed Primarily as losses due to chimney effect. the contribution of the chimney effect to the total heat loss is quantitatively indicated.

A Study on the Propensity for the Deformation and Failure of a Small Pressurized Cylinder (소형 압력 용기의 변형 및 파열 경향에 대한 연구)

  • Yim, Sang-Sik;Jang, Kap-Man;Lee, Jin-Han;Choi, Ye-Roo;Kim, Ki-Bum
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.146-149
    • /
    • 2014
  • Compared to Butane tank, the propane tank should have a higher compressive strength due to its higher vapor pressure. In this study, a theoretical analysis was performed to evaluate the effect of change in the geometry of bottom plate on the mechanical property of tank, and an experiment was also carried out to observe the propensity of the deformation and failure of the vessel using hydraulic pressurizing device. The compressive strength of the vessel was observed to improve 1.5-2.5 MPa as the curvature of the bottom plate was decreased 62 mm and the thickness of the bottom plate was increased 0.25 mm. This study are expected to provide viable information conducive to achieve on-going development of a small vessel for the pressurized propane gas.

An Investigation of Fluid Mixing with Direct Vessel Injection (직접용기주입에 따른 유체혼합에 관한 연구)

  • Cha, Jong-Hee;Jun, Hyung-Gil
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.63-77
    • /
    • 1994
  • The objective of this work is to investigate fluid mixing phenomena related to pressurized thermal shock(PTS) in a pressurized water reactor(PWR) vessel downcomer during transient cooldown with direct vessel injection(DVI) using test models. The test model designs were based on ABB Combustion Engineering(C-E) System 80+ reactor geometry. A cold leg small break loss-of-coolant accident(LOCA) md a main steam line teak were selected as the potential PTS events for the C-E System 80+. This work consist of two parts. The first part provides the visualization tests of the fluid mixing between DVI fluid and existing coolant in the downcomer region, and the second part is to compare the results of thermal mixing tests with DVI in the other test model. Row visualization tests with DVI have clarified the physical interaction between DVI fluid and primary coolant during transient cooldown. A significant temperature drop was observed in the downcomer during the tests of a small break LOCA Measured transient temperature profiles agree well with the predictions by the REMIX code for a small break LOCA and with the calculations by the COMMIX-1B code for a steam line break event.

  • PDF

The Dynamic Characteristics and Defect Analysis of Pressurized Water Reactor Internals (원자로 내부구조물의 동특성 및 결함해석)

  • Ahn, Chang-Gi;Park, Jin-Ho;Lee, Jeong-Han;Chae, Young-Chul;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.267-270
    • /
    • 2005
  • Finite element model of pressurized water reactor internals were obtained using ANSYS software package to analyze dynamic characteristics. The pressure vessel, hold-down ring, alinement key, core support barrel(CSB), upper guide structure(UGS) and fluid gap were fully modeled using structural solid element(SOLID45) and fluid element(FLUID80) which is one of element types. Also modal analysis using the above finite element model has been performed. As a result, it was found that the fundamental beam mode natural frequency of the CSB were 8.2 Hz, the shell mode one 14.5 Hz. To verify the Finite Element Analysis(FEA), we compare the analysis result with experimental data that is obtained from the plant IVMS(internal Vibration Monitoring System). The experimental results are good agreement with the FEA model.

  • PDF

COMPARATIVE ANALYSIS OF STATION BLACKOUT ACCIDENT PROGRESSION IN TYPICAL PWR, BWR, AND PHWR

  • Park, Soo-Yong;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.311-322
    • /
    • 2012
  • Since the crisis at the Fukushima plants, severe accident progression during a station blackout accident in nuclear power plants is recognized as a very important area for accident management and emergency planning. The purpose of this study is to investigate the comparative characteristics of anticipated severe accident progression among the three typical types of nuclear reactors. A station blackout scenario, where all off-site power is lost and the diesel generators fail, is simulated as an initiating event of a severe accident sequence. In this study a comparative analysis was performed for typical pressurized water reactor (PWR), boiling water reactor (BWR), and pressurized heavy water reactor (PHWR). The study includes the summarization of design differences that would impact severe accident progressions, thermal hydraulic/severe accident phenomenological analysis during a station blackout initiated-severe accident; and an investigation of the core damage process, both within the reactor vessel before it fails and in the containment afterwards, and the resultant impact on the containment.

Pressurized Thermal Shock Analyses of Reactor Pressure Vessel for Main Steam Line Break (주증기관 파단사고에 대한 원자로 용기의 가압열충격 해석)

  • 정명조;박윤원;장창희;정일석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.271-279
    • /
    • 1999
  • 본 연구에서는 국내에서 가장 취약할 것으로 예상되는 원자력 발전소에 가압열충격 사고를 유발할 수 있는 주증기관 파단사고를 가정하여 열수력 해석과 파괴역학 해석을 수행하였다. 원전수명관리연구의 일환으로 계통열수력 해석 및 혼합열유동 해석에 의하여 구한 냉각제의 온도와 압력의 이력 및 용기의 재질성분으로부터 용기의 응력확대계수와 파괴인성치를 계산하고 이들을 비교하여 균열의 진전여부를 판단하여 형상계수가 1/6인 표면균열이 견딜 수 있는 최대 기준무연성천이온도를 결정하였다.

  • PDF

Relative Power Density Distribution Calculations of the Kori Unit 1 Pressurized Water Reactor with Full-Scope Explicit Modeling of Monte Carlo Simulation

  • Kim, Jong-Oh;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.375-384
    • /
    • 1997
  • Relative power density distributions of the Kori Unit 1 pressurized water reactor are calculated by Monte Carlo modeling with the MCNP code. The Kori Unit 1 core is modeled on a three-dimensional representation of the one-eighth of the reactor in-vessel component with reflective boundaries at 0 and 45 degrees. The axial core model is based on half core symmetry and is divided into four axial segments. Fission reaction density in each rod is calculated by following 100 cycles with 5,000 test neutrons in each cycle after starling with a localized neutron source and ten noncontributing settle cycles. Relative assembly power distributions are calculated from fission reaction densities of rods in assembly. After 100 cycle calculations, the system converges to a k value of 1.00039 $\geq$ 0.00084. Relative assembly power distribution is nearly the same with that of the Kori Unit 1 FSAR. Applicability of the full-scope Monte Carlo simulation in the power distribution calculation is examined by the relative root moan square error of 2.159%.

  • PDF

Pressurized Thermal Shock Re-Evaluation Studies for Korean PWR Plant (국내 가압경수형 원전에 대한 가압열충격 재평가 연구)

  • Jung, Sung-Gyu;Kim, Hyun-Su;Jin, Tae-Eun;Jang, Chang-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.16-21
    • /
    • 2001
  • The PTS reference temperature of reactor pressure vessel for one of the Korean NPPs has been predicted to exceed the screening criteria before it reaches it's design life. To cope with this issue, a plant-specific PTS analysis had been performed in accordance with the Regulatory Guide 1.154 in 1999. As a result of that analysis, it was found that current methodology of RG. 1.154 was very conservative. The objective of this study is to examine the effects of changing various input parameters and to determine the amount of conservatism of the current PTS analysis method. To do this, based on the past PTS analysis experience, parametric study were performed for various models using modified VISA-II code. This paper discusses the analysis results and recommendations to reduce the conservatism of current analysis method.

  • PDF

Power Density Distribution Calculation of a Pressurized Water Reactor with Fullscope Explicit Modeling by MCNP Code

  • Kim, Jong-Oh;Kim, Jong-Kyung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.179-184
    • /
    • 1996
  • Power density distribution and criticality of a pressurized water reactor are calculated with a Monte Carlo calculation using the MCNP code. The MCNP model is based on one-eighth core symmetry. Individual fuel assemblies are modeled with fullscope three dimensional description except grid spacer. The fuel rod is divided into eight axial segments. Core internals above and below the active fuel region is represented as coolant. After 400 cycle calculations, the system converges to a k value of 1.09151$\pm$0.00066. Fission reaction rate in each rod is also calculated to use as the source term in pressure vessel fluence calculation.

  • PDF