• 제목/요약/키워드: pressurized flow

검색결과 268건 처리시간 0.023초

오픈 블라스팅 로봇에서 관로내의 그리트 가압이송 특성 (Pressurized Pneumatic Grit Conveying Characteristics in Pipeline for Open Blasting Robot)

  • 김원배;양석원;이상범;김수호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1185-1189
    • /
    • 2007
  • In this paper, to improve the efficiency of pressurized pneumatic grit conveying for ship block open blasting process. Pressurized pneumatic grit conveying is defined as the transportation of grit(abrasive) in a compressed air flow. Total Pressure loss in flexible hose for pneumatic conveying is sum of pressure losses due to gas and grit and needle type pressure transmitter for measured pressure loss. haracteristics of grit open blasting by pneumatic conveying were studied experimentally. Studies variables were blasting nozzle ID, length and ID of flexible hose, grit flow rate, flow rate and pressure of transport air. It was experimentally proved that optimal open blasting condition and cost effective operation regarding grit blasting, obtaining a high qulity surface preparation(Sa $2^{\frac{1}{2}}$).

  • PDF

연료전지용 연료승압 블로어 내부유동장 평가 (Internal Flow Analysis of a Fuel Pressurized Blower for Fuel Cell System)

  • 최가람;장춘만
    • 신재생에너지
    • /
    • 제7권3호
    • /
    • pp.29-35
    • /
    • 2011
  • This paper describes an internal flow characteristics of a fuel pressurized blower, used for 1kW domestic fuel cell system. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is introduced. SST model with scalable wall function is employed to estimate the eddy viscosity. Moving mesh system is applied to the numerical analysis for describing the volume change of a diaphragm cavity in time. Throughout numerical simulation with the modeling of the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Force variations on the lower plate of a diaphragm cavity are evaluated in time. It is found that the driving force at the suction stage of a diaphragm cavity is more necessary than that at the discharging stage.

노즐 형상비에 따른 고압 분사류의 유동특성에 관한 실험적 연구 (Experimental Study on the Flow Characteristics of High Pressurized Jets Depending upon Aspect Ratio)

  • 남궁정환;이상진;김규철;이삼구;노병준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.233-236
    • /
    • 2002
  • The high-pressurized spray nozzle is used f3r special washing and cutting with strong impact force. The performance of this nozzle, which focused on spray penetration and radial dispersion, was mainly investigated to maximize the momentum and minimize the flow loss. Hence, our experimental research was conducted by changing the aspect ratio ranging from 0 to 3 with nozzle outlet of 1.1. The spray trajectory far high-pressurized water was experimentally investigated using PDPA diagnostics, which was available at spray downstream region. As the spray at upstream near the nozzle exit did not show the improved disintegration. The results showed empirical correlation with regard to non-dimensional axial velocity distribution, spray penetration, and radial spreading rate with photographic visualization.

  • PDF

Numerical Study on Coolant Flow Distribution at the Core Inlet for an Integral Pressurized Water Reactor

  • Sun, Lin;Peng, Minjun;Xia, Genglei;Lv, Xing;Li, Ren
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.71-81
    • /
    • 2017
  • When an integral pressurized water reactor is operated under low power conditions, once-through steam generator group operation strategy is applied. However, group operation strategy will cause nonuniform coolant flow distribution at the core inlet and lower plenum. To help coolant flow mix more uniformly, a flow mixing chamber (FMC) has been designed. In this paper, computational fluid dynamics methods have been used to investigate the coolant distribution by the effect of FMC. Velocity and temperature characteristics under different low power conditions and optimized FMC configuration have been analyzed. The results illustrate that the FMC can help improve the nonuniform coolant temperature distribution at the core inlet effectively; at the same time, the FMC will induce more resistance in the downcomer and lower plenum.

피압 단순 관로 체제에서의 인버스 임피던스를 이용한 수압기반 유속추정기술 (A pressure based flow velocity estimation technique using inverse impedance for simple pressurized pipeline systems)

  • 이정섭;고동원;최두용;김상현
    • 상하수도학회지
    • /
    • 제36권4호
    • /
    • pp.219-228
    • /
    • 2022
  • In this study, we propose a flow velocity evaluation scheme based on pressure measurement in pressurized pipeline systems. Conservation of mass and momentum equations can be decomposed into mean and perturbation of pressure head and flowrate, which provide the pressure head and flowrate relationship between upstream and donwstream point in pressurized pipeline system. The inverse impedance formulations were derived to address measured pressure at downstream to evaluation of flow velocity or pressure at any point of system. The convolution of response function to pressure head in downstream valve provides the flow velocity response in any point of the simple pipeline system. Simulation comparison between traditional method of characteristics and the proposed method provide good agreements between two distinct approaches.

다공질정압 Thrust공기 베어링의 동특성 해석 (Analysis on the Dynamic Characteristics of Externally Pressurized Porous Thrust Air Bearings)

  • 박천홍;이후상
    • 연구논문집
    • /
    • 통권23호
    • /
    • pp.5-13
    • /
    • 1993
  • The present work deals with the theoretical prediction of static & dynamic characteristic of annular type externally pressurized thrust air bearings with metal-sintered porous media. For the evaluation of surface loading effect by machining, it is assumed that the flow at the porous surface is dominant and which is equivalent to the flow through orifice. Finite different method with over-relaxation method is used to solve the numerical problems. The influences of radius ratio, supply pressure and squeeze number on performances are investigated, as the results. The results of this study can be used to predict the optimal running condition and stable realm of porous bearings.

  • PDF

웨이블릿 해석과 인공 신경회로망을 이용한 원자력발전소의 급수유량 평가 (Feedwater Flow Rate Evaluation of Nuclear Power Plants Using Wavelet Analysis and Artificial Neural Networks)

  • 유성식;서종태;박종호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.346-353
    • /
    • 2002
  • The steam generator feedwater flow rate in a nuclear power plant was estimated by means of artificial neural networks with the wavelet analysis for enhanced information extraction. The fouling of venturi meters, used for steam generator feedwater flow rate in pressurized water reactors, may result in unnecessary plant power derating. The backpropagation network was used to generate models of signals for a pressurized water reactor. Multiple-input single-output heteroassociative networks were used for evaluating the feedwater flow rate as a function of a set of related variables. The wavelet was used as a low pass filter eliminating the noise from the raw signals. The results have shown that possible fouling of venturi can be detected by neural networks, and the feedwater flow rate can be predicted as an alternative to existing methods. The research has also indicated that the decomposition of signals by wavelet transform is a powerful approach to signal analysis for denoising.

  • PDF

외부가압 공기베어링의 동적 특성에 관한 해석 (A Study on the Dynamic Characteristics of an Externally Pressurized Gas Bearing)

  • 김우정;박상신;한동철
    • Tribology and Lubricants
    • /
    • 제7권2호
    • /
    • pp.51-60
    • /
    • 1991
  • For the accurate run-out of a light rotor shaft the sliding bearings supplied with externally pressurized air are effectively applied, and it is important to predict the static and dynamic characteristics of rotor-bearing system. In this study direct numerical method is applied to solve the perturbed Reynolds' equation. To solve it the perturbed dimensionless mass flow rate is used as the boundary condition under the inherently-compensated restrictor. The dynamic characteristics of a rotor supported in the externally pressurized air bearings are analyzed, and as a result the orbit of the journal center is calculated. The theoretical results are investigated and discussed.

CFD를 활용한 수처리공정 대형관에서 압력수 혼합공정 평가 (Evaluation of Pressurized Water Mixing of Big Pipe with CFD at Water Treatment Process)

  • 조영만;유현철;장경혁;정용준
    • 한국물환경학회지
    • /
    • 제37권3호
    • /
    • pp.168-174
    • /
    • 2021
  • Mixing is a very important unit in water treatment process. A mechanical stirring method is generally used for mixing, but recently, the use of pressurized water mixing method (pump diffusion flash mixer) has gained interest because it is more advantageous in terms of mixing time, noise, energy consumption, and maintenance. The following conclusions were obtained from the study of pressurized water mixing method by Computational Fluid Dynamics. Firstly, the mixing degree in the pipe increased as the density of water increased. Secondly, even if the relative velocity between flow rate in the pipe and the pressurized water was constant, the mixing degree decreased as the flow velocity in the pipe increased. Thirdly, the stronger the injection energy the higher the mixing degree. It was also found that the mixing degree was greatly affected by the injection velocity as compared to the injection flow amount. Finally, the required energy to achieve 95% mixing degree at the distance of 10 times diameter in big pipes of 500 mm to 3000 mm was 0.3 to 4.5 kJ. The result of this study could be used in the process design of injection with water purification chemicals, such as, ozone, chlorine, and coagulant.

압력용기로부터 압력방출장치를 통한 가스 방출에 관한 포괄적 고찰 (Comprehensive Consideration on the Discharge of Gases from Pressurized Vessels through Pressure Relief Devices)

  • 정창복
    • 한국안전학회지
    • /
    • 제35권6호
    • /
    • pp.32-45
    • /
    • 2020
  • The problem of determining the discharge rates of gases from pressurized vessels through pressure relief devices was dealt with comprehensively. First, starting from basic fluid flow equations, detailed modeling procedures were presented for isentropic nozzle flows and frictional flows in a pipe, respectively. Meanwhile, physical explanations were given to choking phenomena in terms of the acoustic velocity, elucidating the widespread use of Mach numbers in gas flow models. Frictional flows in a pipe were classified into adiabatic, isothermal, and general flows according to the heat transfer situation around the pipe, but the adiabatic flow model was recommended suitable for gas discharge through pressure relief devices. Next, for the isentropic nozzle flow followed by adiabatic frictional flow in the pipe, two equations were established for two unknowns that consist of the Mach numbers at the inlet and outlet of the pipe, respectively. The relationship among the ratio of downstream reservoir pressure to upstream pressure, mass flux, and total frictional loss coefficient was shown in various forms of MATLAB 2-D plot, 3-D surface plot and contour plot. Then, the profiles of gas properties and velocity in the pipe section were traced. A method to quantify the relationship among the pressure head, velocity head, and total friction loss was presented, and was used in inferring that the rapid increase in gas velocity in the region approaching the choked flow at the pipe outlet is attributed to the conversion of internal energy to kinetic energy. Finally, the Levenspiel chart reproduced in this work was compared with the Lapple chart used in API 521 Standatd.