• Title/Summary/Keyword: pressurization system

Search Result 158, Processing Time 0.024 seconds

Feeding System Design/Analysis Using Test Data Correlation Method (Test data 보정기법을 활용한 추진기관 공급계 설계/해석)

  • Cho, Nam-Kyung;Jeong, Yong-Gahp;Han, Sang-Yeop;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.127-131
    • /
    • 2006
  • An optimization algorithm is applied to a calibration task. In this paper, test data correlation, a reverse analysis method, is presented. With this method, flow rate and heat transfer rate, which are difficult to be measured are estimated using measured pressure and temperature data for helium pressurization system of launch vehicle.

  • PDF

Development of the Design Technology for the Pressurization Equipments of High Speed Train (고속전철용 압력완화장치 설계기술 개발)

  • Yeom, Han-Gil;Park, Seong-Je;Go, Deuk-Yong
    • 연구논문집
    • /
    • s.28
    • /
    • pp.21-37
    • /
    • 1998
  • Atmospheric pressure in a tunnel rises in proportion to the square of train’s speed as it enters a tunnel. This pressure difference propagates into the train and cause aural discomfort to the passengers. In order to alleviate the aural discomfort of them. a new ventilation system has been designed and tested. This system controls the charged and discharged by flow rate by detecting the air pressure generated outside and inside of the train. Test to confirm the fundamental performance of the system was carried out. Consequently, this system was found to be able to alleviate the aural discomfort effectively. Application of the system to TGV-K running in the speed range of 350km/h is considered to have good propospect.

  • PDF

The Development of Pressure Regulator of Propellant Tank for KSR-III (KSR-III 추진제 탱크 압력 조절용 레귤레이터 개발)

  • 정영석;조기주;조인현;김용욱;오승협
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.4
    • /
    • pp.47-58
    • /
    • 2002
  • The pressure regulator has been developed as a pressure-control device of propellant tank in KSR-III. The pressurization system of KSR-III is a basic pressurization system composed of pressurant, He tank and propellant tank. The pressure-control regulator is the most important part of gas-pressurized feed system along with He tank, pyrovalve and He fill valve. The first model of the regulator is tested to satisfy in leakage, strength and basic performance. The second model is tested in the overall test of the KSR-III propulsion system using water. From the test result of the second model, we conclude that the capacity of valve(Cv) must be increased in real system. The third model is modified and tested in the overall test of KSR-III propulsion system using propellant. Finally, the pressure-control regulator is qualified from firing test.

Numerical Study on Air Egress Velocity in Vestibule Pressurization System : Damper Locationfor Uniform Air Egress Velocity in the case of Two Fire Doors (부속실 가압 시스템의 방연풍속에 관한 수치해석적 연구: 2개 출입문이 존재할 경우 균일한 방연풍속을 얻기 위한 댐퍼 위치 선정방법)

  • Seo, Chanwon;Shin, Weon Gyu
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.1-7
    • /
    • 2014
  • Vestibule pressurization system should produce uniform air egress velocity to prevent the intrusion of smoke into escape route when fire accidents occur inside a building and fire doors are open for evacuation of people. Air supplying units in the vestibule need to be arranged by taking account of the location of doors and the volume of the vestibule. In this study, computational fluid dynamics (CFD) simulations were conducted for the vestibule where two doors are installed varying the location of a damper and louver angle. From simulations, we found that when the damper in the vestibule is located at the center of the wall opposite to two fire doors, the uniform air egress velocity can be obtained.

Heating Apparatus Development for Cryogenic Gaseous Helium (극저온 헬륨가스 가열장치 개발)

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.363-367
    • /
    • 2009
  • For the liquid rocket propulsion system using liquid oxygen as oxidizer, helium for pressurizing LOX is usually stored in the LOX tank with cryogenic temperature. For that kind of pressurizing system, cryogenic helium is discharged from the immerged pressurant cylinder and passes through the heat exchanger downstream of gas generator. During the process, helium pressurant is heated from cryogenic temperature to high one and supplied to the ullage of propellant tank. To develop the pressurizing system, a cryogenic heating apparatus is needed to simulate the heat exchanger. In this paper, the cryogenic heating apparatus for development of the pressurization system is presented along with its heating test results with cryogenic helium.

  • PDF

Heating Apparatus Development and Tests for Cryogenic Gaseous Helium (극저온 헬륨가스 가열장치 개발 및 시험)

  • Chung, Yong-Gahp;Cho, Nam-Kyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.63-68
    • /
    • 2011
  • For the liquid rocket propulsion system using liquid oxygen as oxidizer, helium for pressurizing LOX is usually stored in the LOX tank with cryogenic temperature. For that kind of pressurizing system, cryogenic helium is discharged from the immerged pressurant cylinder and passes through the heat exchanger downstream of gas generator. During the process, helium pressurant is heated from cryogenic temperature to high one and supplied to the ullage of propellant tank. To develop the pressurizing system, a cryogenic heating apparatus is needed to simulate the heat exchanger. In this paper, the cryogenic heating apparatus for development of the pressurization system is presented along with its heating test results with cryogenic helium.

Fluid-Structural Analysis of Circumference Pressurization type Butterfly Valve according to Pressurization Distance (무어링 윈치 브레이크의 형상 변경에 따른 제동력과 강도 해석)

  • Sin, Jae-Myung;Han, Dong-Seop;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.407-409
    • /
    • 2010
  • The brake system is very important part of the machine operating system of machine. If the machine does not stop during operation, accidents and facility damage, loss of life can cause. This ship is also in the same. In this study, After we had to change the original shape for the braking force improvement of the Mooring winch brake system, we analyzed the braking force and structural stress analysis of the changed Mooring Winch.

  • PDF

The Influence of Stairway Pressurization Conditions on the Stack Effect in Super-tall Buildings (초고층건물 계단실 단독 급기가압 제연조건이 연돌효과에 미치는 영향)

  • Park, Yong-Hwan;Kim, Beom-Gyu
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.109-115
    • /
    • 2010
  • Maximum pressure difference in central core type 80th super_tall buildings was estimated as 75 Pa during no outside wind due to the winter stack effect. Maximum pressure difference of 225 Pa can be obtained depending on the location of air injection fan during the stairway pressurization at fire. Bottom_only air injection system provided the best results in the sense of required air flow rates and pressure distributions. Top_only air supply system was estimated as the worst for this country. It revealed that the decrease of the temperature in the stairway due to the cold outside air injection reduced the required flow rates of the fan and significantly changed the distribution of pressure differences.

Precise Measurement Method of Radial Artery Pulse Waveform using Robotic Applanation Tonometry Sensor (로보틱 토노메트리 센서를 이용한 요골 동맥 파형 정밀 측정 방법)

  • Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.135-140
    • /
    • 2017
  • In this paper, a novel measurement method of radial artery pulse waveform using robotic applanation tonometry (RAT) was present to reduce the errors by the pressing direction of the vessel. The RAT consisted of an array of pressure sensors and 2-axis tilt sensor, which was attached to the universal joint with a linear spring and five-DOF robotic manipulator with a one-axis force sensor. Using the RAT mechanism, the pulse sensor could be manipulated to perpendicularly pressurize the radial artery. A pilot experimental result showed that the proposed mechanism could find the optimal pressurization angles of the pulse sensor within ${\pm}3^{\circ}$standard deviations. Coefficient values of variation of maximum pulse peaks extracted from the pulse waveforms were 4.692, 6.994, and 11.039 % for three channels with the highest magnitudes. It is expected that the proposed method can be helpful to develop more precise tonometry system measuring the pulse waveform on the radial artery.

A New Approach to the High Efficiency of Hydraulic Excavator (유압식 굴삭기의 고효율 화에 관한 새로운 접근)

  • Lee, Y.B.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.39-45
    • /
    • 2014
  • With recent oil price increases, the fuel efficiency of hydraulic excavators has become a serious issue. Researchers have considered weight lightening by high pressurization in order to improve the efficiency of the excavator and pump controlled actuation (PCA) and to reduce pressure loss of hybrid and valves using mechanical inertia. However, high pressurization is not very effective because the excavator operates at a low speed; a hybrid is inefficient because little accumulated inertial energy is accumulated; and PCA is ineffective because control precision and responsibility are low. In this study, a method to minimize air and gas in hydraulic oil has been presented as a simple and new way to increase hydraulic efficiency.