• Title/Summary/Keyword: pressure vacuum packaging

Search Result 8, Processing Time 0.025 seconds

A Study on Wafer Level Vacuum Packaging using Epi poly for MEMS Applications (Epi poly를 이용한 MEMS 소자용 웨이퍼 단위의 진공 패키징에 대한 연구)

  • 석선호;이병렬;전국진
    • Journal of the Semiconductor & Display Technology
    • /
    • v.1 no.1
    • /
    • pp.15-19
    • /
    • 2002
  • A new vacuum packaging process in wafer level is developed for the surface micromachining devices using glass silicon anodic bonding technology. The inside pressure of the packaged device was measured indirectly by the quality factor of the mechanical resonator. The measured Q factor was about 5$\times10^4$ and the estimated inner pressure was about 1 mTorr. And it is also possible to change the inside pressure of the packaged devices from 2 Torr to 1 mTorr by varying the amount of the Ti gettering material. The long-term stability test is still on the way, but in initial characterization, the yield is about 80% and the vacuum degradation with time was not observed.

  • PDF

A Study on Panel Manufacture and Packaging Method for Digital FED (디지털 FID용 패널제작과 패키 방법에 관한 연구)

  • Kim, Soo-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.29-35
    • /
    • 2009
  • Field emission displays(FED) are currently being study as a potential flat technology. The purpose of this project shows the research result of vacuum packaging technology for the development of FED. For FED vacuum packaging, the bonding of glass/glass, the exhaust of vacuum and getter technology have been studied for vacuum packaging technology The simulation and vacuum sealing, and glass/glass bonding are also extensively studied. The glass/glass bonding is formed by using the frit glass and the Inside pressure of complete panel showed of $2{\times}10^{-5}$[Torr]. As a getter result, the increase of pressure has been showed the decrease of outgassing effect by using thin film getter.

Extension of shelf-life in golden needle mushroom (Flammulina velutipes) according to pressure composition packaging using oriented polypropylene film (연신 폴리프로필렌 필름으로 진공 포장된 팽이버섯(Flammulina velutipes)의 저장성 향상)

  • Lim, Sooyeon;Hong, Yoon Pyo;Lee, Eun Jin;Kim, Jongkee;Lee, Ji Hyun;Choi, Ji Weon
    • Food Science and Preservation
    • /
    • v.21 no.6
    • /
    • pp.767-775
    • /
    • 2014
  • The shelf-life of fresh mushrooms is notably limited because their browning, texture change, and decay are too fast after immediately harvest. Especially, the best management for extending golden needle mushroom's shelf-life is modified atmosphere packaging under pressure vacuum at cold storage. In this study, three types of films, $20{\mu}m$ polyethylene+polypropylene (PE+PP), oriented polypropylene (OPP), and low density polyethylene (LDPE) were tested to extend the shelf-life of golden needle mushrooms. Mushrooms were packed under pressure vacuum and stored at $10^{\circ}C$ for 2 weeks. The golden mushrooms in LDPE film as a commercial packaging, were highly perishable and immediately proceed deterioration as browning, elongation, fluctuation of respiratory quotient (RQ) and softening within 7 days after packaging. On the other hand, the mushrooms in OPP and PE+PP film shown that shelf-life were extend to 14 days from 7 days, causing delay breakup of vacuum and maintenance of color, length, and RQ during storage. The breakup of vacuum in PE+PP film was faster few days than OPP film packaging. This present study indicated that the golden needle mushrooms by OPP packaging under pressure vacuum treatment might be extended the shelf-life until approximately 14 days during cold storage.

Wafer-level Vacuum Packaging of a MEMS Resonator using the Three-layer Bonding Technique (3중 접합 공정에 의한 MEMS 공진기의 웨이퍼레벨 진공 패키징)

  • Yang, Chung Mo;Kim, Hee Yeoun;Park, Jong Cheol;Na, Ye Eun;Kim, Tae Hyun;Noh, Kil Son;Sim, Gap Seop;Kim, Ki Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.354-359
    • /
    • 2020
  • The high vacuum hermetic sealing technique ensures excellent performance of MEMS resonators. For the high vacuum hermetic sealing, the customization of anodic bonding equipment was conducted for the glass/Si/glass triple-stack anodic bonding process. Figure 1 presents the schematic of the MEMS resonator with triple-stack high-vacuum anodic bonding. The anodic bonding process for vacuum sealing was performed with the chamber pressure lower than 5 × 10-6 mbar, the piston pressure of 5 kN, and the applied voltage was 1 kV. The process temperature during anodic bonding was 400 ℃. To maintain the vacuum condition of the glass cavity, a getter material, such as a titanium thin film, was deposited. The getter materials was active at the 400 ℃ during the anodic bonding process. To read out the electrical signals from the Si resonator, a vertical feed-through was applied by using through glass via (TGV) which is formed by sandblasting technique of cap glass wafer. The aluminum electrodes was conformally deposited on the via-hole structure of cap glass. The TGV process provides reliable electrical interconnection between Si resonator and aluminum electrodes on the cap glass without leakage or electrical disconnection through the TGV. The fabricated MEMS resonator with proposed vacuum packaging using three-layer anodic bonding process has resonance frequency and quality factor of about 16 kHz and more than 40,000, respectively.

Defect detection of vacuum insulation panel using image analysis based on corner feature detection (코너 특정점 기반의 영상분석을 활용한 진공단열재 결함 검출)

  • Kim, Beom-Soo;Yang, Jeonghyeon;Kim, Yeonwon
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.398-402
    • /
    • 2022
  • Vacuum Insulation Panel (VIP) is an high energy efficient insulation system that facilitate slim but high insulation performance, based on based on a porous core material evacuated and encapsulated in a multi-barrier envelope. Although VIP has been on the market for decades now, it wasn't until recently that efforts have been initiated to propose a standard on aging testing. One of the issues regarding VIP is its durability and aging due to pressure and moisture dependent increase of the initial low thermal conductivity with time. It is hard to visually determine at an early stage. Recently, a method of analyzing the damage on the a material surface by applying image processing technology has been widely used. These techniques provide fast and accurate data with a non-destructive way. In this study, the surface VIP images were analyzed using the Harris corner detection algorithm. As a result, 171,333 corner points in the normal packaging were detected, whereas 32,895 of the defective packaging, which were less than the normal packaging. were detected. These results are considered to provide meaningful information for the determination of VIP condition.

Fabrication of Silicon Window for Low-price Thermal Imaging System (저가형 열영상 시스템을 위한 실리콘 윈도우 제작)

  • Sung, Byung Mok;Jung, Dong Geon;Bang, Soon Jae;Baek, Sun Min;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.264-269
    • /
    • 2015
  • An infrared (IR) bolometer measures the change of resistance by absorbing incident IR radiation and generates a signal as a function of the radiation intensity. Since a bolometer requires temperature stabilization and light filtering except for the infrared rays, it is essential for the device to be packaged meeting conditions that above mentioned. Minimization of heat loss is needed in order to stabilize temperature of bolometer. Heat loss by conduction or convection requires a medium, so the heat loss will be minimized if the medium is a vacuum. Therefore, vacuum packaging for bolometer is necessary. Another important element in bolometer packaging is germanium (Ge) window, which transmits IR radiation to heat the bolometer. To ensure a complete transmittance of IR light, anti-reflection (AR) coatings are deposited on both sides of the window. Although the transmittance of Ge window is high for IR rays, it is difficult to use frequently in low-price IR bolometer because of its high price. In this paper, we fabricated IR window by utilizing silicon (Si) substrate instead of Ge in order to reduce the cost of bolometer packaging. To enhance the IR transmittance through Si substrate, it is textured using Reactive Ion Etching (RIE). The texturing process of Si substrate is performed along with the change of experimental conditions such as gas ratio, pressure, etching time and RF power.

Study of the effect of vacuum annealing on sputtered SnxOy thin films by SnO/Sn composite target (SnO/Sn 혼합 타겟으로 스퍼터 증착된 SnO 박막의 열처리 효과)

  • Kim, Cheol;Cho, Seungbum;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.43-48
    • /
    • 2017
  • Conductive $Sn_xO_y$ thin films were fabricated via RF reactive sputtering using SnO:Sn (80:20 mol%) composite target. The composite target was used to produce a chemically stable composition of $Sn_xO_y$ thin film while controlling structural defects by chemical reaction between tin and oxygen. During sputtering pressure, RF power, and substrate temperature were fixed, and oxygen partial pressure was varied from 0% to 12%. Annealing process was carried out at $300^{\circ}C$ for 1 hour in vacuum. Except $P_{O2}=0%$ sample, all samples showed the transmittance of 80~90% and amorphous phase before and after annealing. Electrically stable p-type $Sn_xO_y$ thin film with high transmittance was only obtained from the oxygen partial pressure at 12%. The carrier concentration and mobility for the $P_{O2}=12%$ were $6.36{\times}10^{18}cm^{-3}$ and $1.02cm^2V^{-1}s^{-1}$ respectively after annealing.

마이크로볼로미터 IR 소자의 응답도 특성의 진공도 의존성 연구

  • Han, Myeong-Su;Han, Seok-Man;Sin, Jae-Cheol;Go, Hang-Ju;Kim, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.361-361
    • /
    • 2013
  • 비냉각 적외선 검출소자는 빛이 전혀 없는 환경에서도 사물을 감지하는 열상장비의 핵심소자이다. 마이크로볼로미터 적외선 검출기는 상온에서 동작하며, 온도안정화를 위해 TEC를 장착하여 진공패키지로 조립된다. 패키지는 진공을 유지할 수 있도록 일반적으로 메탈로 제작되며, 단가 감소 및 생산성 증대를 위해 wafer level packaging 방법을 이용한다. 마이크로볼로미터의 특성은 패키지의 진공 변화에 매우 민감하다. 센서의 감도를 증가시키기 위해서는 진공환경을 유지해야 한다. 볼로미터 소자의 특성은 상압에서 열전도는 기판과 멤브레인 사이의 에어갭을 통해 열손실을 야기하므로 센서의 반응도가 현저히 줄어든다. 에어갭이 1 um 정도 되더라도 그 사이에 존재하는 열전도가 가능하므로 진공을 유지하여 열고립 상태를 증대시킬 수 있다. 이에 본 연구에서는 소자의 동작시 압력, 즉 진공도가 볼로미터 소자의 반응도 특성에 미치는 영향을 조사하였다. 마이크로볼로미터 소자는 $2{\times}8$ 어레이 형태로 제작하였으며, metal pad를 각 단위셀에 배치하였으며, 공통전극으로 한 개의 metal pad를 넣어 설계하였다. 흡수체로써 VOx를 사용하였으며, 열 고립구조를 위해 2.5 um 공명 흡수층의 floating 구조로 멤브레인을 형성하였다. 진공패키지는 메탈패키지를 제작하여 볼로미터 칩을 TEC 위에 장착하였으며, 신호의 감지를 위해 가변저항을 매칭시켰다. 반응도는 신호 대 잡음 값을 획득하여 소자에 도달하는 적외선 에너지에 대해 반응하는 값을 계산에 의해 얻어내는 것이다. 픽셀 크기는 $50{\times}50$ um이며, 패키지 조립 공정 후 온도변화에 따른 저항 측정을 통해 TCR 값을 얻었다. 이때 TCR은 약 -2.5%/K으로 나타났다. $2{\times}8$의 4개 단위소자에 대해 측정한 값은 균일하게 TCR 값이 나타났다. 광반응 특성은 볼로미터 단위소자에 대해서 먼저 고진공(5e-6 torr) 하에서 측정하였으며, 반응도는 25,000 V/W의 값을 나타내었고, 탐지도는 약 2e+8 $cmHz_{1/2}$/W로 나타났다. 패키지의 압력 조절을 위해 TMP 및 로터리 펌프를 이용하여 100 torr에서 1e-4 torr의 범위에서 압력조절 밸브를 이용하여 질소가스의 압력으로 진공도를 변화시켰다. 적외선 반응신호는 압력이 증가함에 따라 감소하였으며, 2e-1 torr의 압력에서 신호의 크기가 감소하기 시작하여 5 torr에서 반응도의 1/2 값을 나타냄을 알 수 있었다. 30 torr 이상에서는 신호가 잡음값 과거의 동일하여 신호대 잡음비가 1로 나타남을 알 수 있었다. 또한 진공도 변화에 대해, 흑체온도에 따른 반응도 및 탐지도의 특성을 조사한 결과를 발표한다. 반응도의 증가를 위해 진공도는 진공도는 1e-2 torr 이하의 압력을 유지해야 함을 본 실험을 통해 알 수 있었다.

  • PDF