• 제목/요약/키워드: pressure transfer function

검색결과 222건 처리시간 0.028초

전달함수를 이용한 대동맥 맥파 추정 및 증강점 검출 알고리즘 개선에 관한 연구 (Estimation of the Central Aortic Pulse using Transfer Function and Improvement of an Augmentation Point Detection Algorithm)

  • 임재중
    • 전자공학회논문지SC
    • /
    • 제45권3호
    • /
    • pp.68-79
    • /
    • 2008
  • 대동맥 증강지수는 심실의 부하뿐만 아니라 대동맥의 탄력성을 직접적으로 나타낼 수 있는 장점 때문에 동맥의 경직도를 평가하는 지표로 주목받고 있다. 하지만, 정확한 대동맥 증강지수를 계산하기 위해서는 직접 카테터를 피험자에 삽입하여 측정해야 하기 때문에 임상에 적용하기에는 한계가 존재한다. 이러한 문제점 때문에 전달함수를 이용하여 요골 동맥 맥파로부터 대동맥 맥파를 간접적으로 추정하는 방법이 이용되고 있다. 본 논문에서는 전달함수를 구하기 위하여 Millar 카테터를 이용한대동맥 맥파와 토노메트릭 방식의 압력센서를 이용하여 요골동맥 맥파를 측정하였다. 또한, 기존의 증강점 검출 알고리즘 대신단계적으로 미분 차수를 증가시키면서 증강점을 검출하는 새로운 알고리즘을 제안하였다. 10차 ARX 모델을 이용하여 전달함수를 구현하였으며, 잔차 분석을 통하여 모델을 검증하였다. 증강점 검출 알고리즘 검증을 위하여 네 가지 종류의 합성파를 만들어 제안된 알고리즘이 기존 알고리즘 보다 더 정확한 결과를 나타내는 것을 확인할 수 있었다. 본 연구는 쉽게 측정할 수 있는 요골동맥 맥파를 이용하여 대동맥의 경직도를 평가할 수 있는 방법을 제시하였으며 이를 통하여 다양한 심혈관 질환의 조기 진단에 기여할 수 있을 것이다.

Numerical Analysis on the Die Pad/Epoxy Molding Compound(EMC) Interface Delamination in Plastic Packages under Thermal and Vapor Pressure Loadings

  • Jin Yu
    • 마이크로전자및패키징학회지
    • /
    • 제5권2호
    • /
    • pp.37-48
    • /
    • 1998
  • The popcorn cracking phenomena in plastic IC packages during reflow soldering are investigated by considering the heat transfer and moisture diffusion through the epoxy molding compound(EMC) along with the mechanics of interface delamination. Heat transfer and moisture diffusion through EMC under die pad are analyzed by finite difference method (FDM)during the pre-conditioning and subsequent reflow soldiering pro-cess and the amounts of moisture mass and vapor pressure at delaminated die pad/ EMC interface are calculated as a function of the reflow soldering time. The energy release rate stress intensity factor and phase angle were obtained under various loading conditions which are thermal crack face vapor pressure and mixed loadings. It was shown that thermal loading was the main driving force for the crack propagation for small crack lengths but vapor pressure loading played more significant role as crack grew.

Effects of Inlet Turbulence Conditions and Near-wall Treatment Methods on Heat Transfer Prediction over Gas Turbine Vanes

  • Bak, Jeong-Gyu;Cho, Jinsoo;Lee, Seawook;Kang, Young Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.8-19
    • /
    • 2016
  • This paper investigates the effects of inlet turbulence conditions and near-wall treatment methods on the heat transfer prediction of gas turbine vanes within the range of engine relevant turbulence conditions. The two near-wall treatment methods, the wall-function and low-Reynolds number method, were combined with the SST and ${\omega}RSM$ turbulence model. Additionally, the RNG $k-{\varepsilon}$, SSG RSM, and $SST_+{\gamma}-Re_{\theta}$ transition model were adopted for the purpose of comparison. All computations were conducted using a commercial CFD code, CFX, considering a three-dimensional, steady, compressible flow. The conjugate heat transfer method was applied to all simulation cases with internally cooled NASA turbine vanes. The CFD results at mid-span were compared with the measured data under different inlet turbulence conditions. In the SST solutions, on the pressure side, both the wall-function and low-Reynolds number method exhibited a reasonable agreement with the measured data. On the suction side, however, both wall-function and low-Reynolds number method failed to predict the variations of heat transfer coefficient and temperature caused by boundary layer flow transition. In the ${\omega}RSM$ results, the wall-function showed reasonable predictions for both the heat transfer coefficient and temperature variations including flow transition onset on suction side, but, low-Reynolds methods did not properly capture the variation of the heat transfer coefficient. The $SST_+{\gamma}-Re_{\theta}$ transition model showed variation of the heat transfer coefficient on the transition regions, but did not capture the proper transition onset location, and was found to be much more sensitive to the inlet turbulence length scale. Overall, the Reynolds stress model and wall function configuration showed the reasonable predictions in presented cases.

열간단조시 금형과 소재간 계면열전달계수에 관한 연구 (A Study of Interface Heat Transfer Coefficient Between Die and Workpiece for Hot Forging)

  • 권진욱;이정환;이영선;권용남;배원병
    • 소성∙가공
    • /
    • 제14권5호
    • /
    • pp.460-465
    • /
    • 2005
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change for the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were affected with the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. In this study, the experimental and FE analysis were performed to evaluate the coefficient with a function of pressure, temperature, material, and etc. The closed die upsetting was used to measure the coefficient on pressure over the flow stress. AISI1045, A16061, and Cu-OFHC were used to analyze the effect of material. The coefficient was increased with step-up of pressure between die and workpiece. And, A16061 was larger than that of the AISI1045 and Cu-OFHC up to the five times.

열간단조시 금형과 소재간 계면열전달계수에 관한 연구 (A study of interface heat transfer coefficient between die and workpiece for hot forging)

  • 권진욱;이영선;권용남;이정환;배원병
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.122-126
    • /
    • 2004
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change fur the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were affected with the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. In this study, the experimental and FE analysis were performed to evaluate the coefficient with a function of pressure, temperature, material, and etc. The sealed die upsetting was used to measure the coefficient on pressure over the flow stress. AISI1045, Al6XXX, and Pure-Cupper were used to analyze effects according to the material. The coefficient was increased with step-up of pressure between die and workpiece. And, Al6XXX was larger than the AISI1045 and Pure-Cupper up to the five times.

  • PDF

컴퓨터에 의한 열교환기 최적설계 (Computer-Aided Optimal Design of Heat Exchangers)

  • 송태호;오진국;윤창현;허경재
    • 대한설비공학회지:설비저널
    • /
    • 제10권4호
    • /
    • pp.297-303
    • /
    • 1981
  • Optimal design of shell and tube heat exchanger system with the working fluids which may condense outside the tubes has been carried out under specified inlet and outlet conditions. Independent variables such as number of parallel series, tube diameter, distribution pitch, tube side pressure loss, baffle cut and shell side pressure loss as well as dependent variables such as shell diameter, number of tubes, number of serial series and number of baffles were all characterized according to the standard. Exhaustive search method was used to construct a computer program together with the calculation of heat transfer rate by LMTD method. stress analysis of maj or parts was made to examine their dimensions satisfying heat transfer and pressure loss requirements. Cost estimation based on the installation, operation and maintenance was also made, A few representative variables, heat transfer area, shell diameter and pressure loss, were used to express cost function, finally giving the optimal selection of all tentative solutions.

  • PDF

시스템 식별기법을 활용한 파압과 해수면 모델링 (Modelling of Wind Wave Pressure and Free-surface Elevation using System Identification)

  • 위톨드 키에스키윅즈;요르단 바두르
    • 한국해안·해양공학회논문집
    • /
    • 제25권6호
    • /
    • pp.422-432
    • /
    • 2013
  • 해수면과 해저파압을 연계하는 모수 모형을 개발하기 위한 시스템 식별법을 제시하였다. 비선형 고정변수를 포함한 선형 시불변 모형 구조를 가정하고 추가적인 입력자료를 갖는 자기회귀모형 (ARX)을 이용하여 해저파압 시계열자료로부터 해수면 시계열자료를 또는 해수면 시계열자료로부터 해저파압 시계열자료를 추출하는 방법을 제시하였다. 임의로 선정된 해수면과 해저 파압 자료를 이용하여 모형을 검증하였으며, 유사한 해저수심의 파압자료와 다른 해상 기상조건으로 생성된 해수면 스펙트럼 자료를 통해 재검증하였다. 시스템 식별법을 이용한 방법이 전통적인 선형파 이론을 이용한 선형전송함수(LTF) 방법보다 전반적으로 더 정확하게 수행됨을 확인하였다. 또한 본 논문에서 제시된 방법으로 추정된 해저 파압 시계열모의는 수정 선형전송함수(corrected LTF)에 의한 결과와 유사함을 확인하였다.

충전탑에서 흡수에 따른 물질전달과 수력학적 거동에 관한 연구 (A Study on Hydraulic Behavior and Mass Transfer by Absorption in Packing Tower)

  • 김석택
    • 한국환경과학회지
    • /
    • 제9권5호
    • /
    • pp.393-396
    • /
    • 2000
  • Packing tower has been used in the chemical industry and the protection of environment for a long time. In the view of environmental protection purification of exhaust gas can be performance effective by gas absorption in counter-current packing tower. In this study characteristics of hydraulic and mass transfer were investigated in D. $0.3m {\times} H. 1.4m$ packing tower with 50mn plastic Hiflow-ring. This study was carried out "Test systems were experimented in conditions of Air, $Air/H_2O. NH_3-Air/H_2O, NH_3-Air/H_2O-H_2SO_4$ and $SO_2-Air/H_2O-NaOH$ under steady state" The extent of test included dry and wetting pressure drop physical law separation efficiency and hold-up as function of gas and liquid load.quid load.

  • PDF

충격가진에 의한 진동판의 방사음에 대한 동특성 (Dynamic characteristics of Sound Radiated from a Vibrating Plate by Impact Force)

  • 오재응
    • 한국음향학회지
    • /
    • 제2권1호
    • /
    • pp.48-58
    • /
    • 1983
  • The transient sound radiation from the impact between a steel ball and a thick plate is analyzed theoretically and compared with experiment results. The derivation process itself is difficult to analyze sound radiation characteristics theoretically for a thick plate with some resonances but may be investigated from measured data. During mechanical impacts, arbitrary driving point importance for an elastic system enables to predict by using mechanical importance method. In order to obtain approximate solution for an impact model testing, the surface Helmholtz integral formulation based on the integral expression for pressure in the field in terms of surface pressure and normal velocity is used as a basis. A simple expression is developed for an impulsive response function, which is time dependent velocity potential and pressure for an impact may then be computed by a convolution of exciting force. In estimating of elastic-acoustical correlation problems, mechanical inertance, overall transfer function and radiation resistance obtained by signal processing techniques are used. The usefulness is confirmed by applying these methods prediction of arbitray driving pint inertance, radiated sound pressure and exciting force.

  • PDF

쉐브론 형상 판형 열교환기의 고온 채널에서의 압력손실 및 열전달 특성에 관한 해석 연구 (A Numerical Study on the Pressure Drop and Heat Transfer in the Hot Channel of Plate heat Exchanger with Chevron Shape)

  • 손상호;신정헌;김정철;윤석호;이공훈
    • 설비공학논문집
    • /
    • 제30권4호
    • /
    • pp.175-185
    • /
    • 2018
  • This research investigates the internal flow and heat transfer in a plate heat exchanger with chevron shape by utilizing the computational fluid dynamics (CFD) software. The basic unit of the plate heat exchanger is generally composed of a hot channel, an intermediate chevron plate, and a cold channel. Several studies have reported experimental and numerical simulation of heat transfer and pressure drop. This study focused on the detailed numerical simulation of flow and heat transfer in the complicated chevron shape channel. The long chevron plate was designed to include 16 chevron patterns. For proper mesh resolution, the number of cells was determined after the grid sensitivity test. The working fluid is water, and its properties are defined as a function of temperature. The Reynolds number ranges from 900 to 9,000 in the simulation. A realizable $k-{\varepsilon}$ model and non-equilibrium wall function are properly considered for the turbulent flow. The friction factors and heat transfer coefficient are validated by comparing them with existing empirical correlations, and other patterned flow phenomena are also investigated.