• Title/Summary/Keyword: pressure transfer function

Search Result 222, Processing Time 0.026 seconds

Modeling of Microstructural Evolution in Squeeze Casting of an Al-4.5wt%Cu Alloy (용탕단조시 Al-4.5%Cu합금의 조직예측)

  • Cho, In-Sung;Hong, Chun-Pyo;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.550-555
    • /
    • 1996
  • A stochastic model, based on the coupling of the finite volume(FV) method for macroscopic heat flow calculation and a two-dimensional cellular automaton(CA) model for treating microstructural evolution was applied-for the prediction of microstructural evolution in squeeze casting. The interfacial heat transfer coefficient at the casting/die interface was evaluated as a function of time using an inverse problem method in order to provide a quantitative simulation of solidification sequences under high pressure. The effects of casting process variables on the formation of solidification grain structures and on the columnar to equiaxed transition of an Al-4.5wt%Cu alloy in squeeze casting were investigated. The calculated solidification grain structures were in good agreement with those obtained experimentally.

  • PDF

Study on Natural Convection in a Rectangular Enclosure With a Heating Source

  • Bae, Kang-Youl;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.294-301
    • /
    • 2004
  • The natural convective heat transfer in a rectangular enclosure with a heating source has been studied by experiment and numerical analysis. The governing equations were solved by a finite volume method, a SIMPLE algorithm was adopted to solve a pressure term. The parameters for the numerical study are positions and surface temperatures of a heating source i.e., Y /H =0.25, 0.5, 0.75 and 11$^{\circ}C$ $\leq$ΔT$\leq$59$^{\circ}C$. The results of isotherms and velocity vectors have been represented, and the numerical results showed a good agreement with experimental values. Based on the numerical results, the mean Nusselt number of the rectangular enclosure wall could be expressed as a function of Grashof number.

Prevention of Particulate Scale with a new winding method in the Electronic Descaling Technology (새로운 도선감는 방법을 사용한 전기장을 이용한 스케일 제거)

  • Kim, Gun-Woo;Ahn, Hee-Sub;Sohn, Chang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.180-186
    • /
    • 2000
  • This paper presents a new winding method in the electronic descaling(ED) technology. The ED technology Produces an oscillating electric field via the Faraday's law to Provide necessary molecular agitation to dissolved mineral ions. But present method gives another agitation force to mineral ions, which is Lorentz's force. Experiments were peformed at various Renolds number. A series of tests was conducted, measuring pressure drop across test section and the overall heat transfer coefficient as a function of time. In order to accelerate the rate of fouling, artificial hard water of 1000ppm $CaCO_3$ was used throughout the tests. The results show that the new method accelerates collision of mineral ions and improvs efficiency of system.

  • PDF

A Numerical Study of Flow Distribution Effect on a Parallel Flpw Heat Exchanger

  • Jeong, Gil-Won;Lee, Gwan-Su;Cha, Dong-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1563-1571
    • /
    • 2001
  • The effect of flow distribution on thermal and flow performance of a parallel flow heat exchanger has been numerically investigated. The flow distribution has been altered by varying the geometrica l parameters that included the locations of the separators, and the inlet/outlet of the heat exchanger. Flow nonuniformities along paths of the heat exchanger, which were believed to be dominantly influential to the thermal performance, have been observed to eventually optimize the design of the heat exchanger. The optimization has been accomplished by minimizing the flow nonuniformity that served as an object function when the Newton's searching method was applied. It was found that the heat transfer of the optimized model increased approximately 7.6%, and the pressure drop decreased 4.7%, compared to those of the base model of the heat exchanger.

  • PDF

Influence of a Structure by the Submerged Breakwater and the Porous Wave Absorber (수중방파제와 다공성 소파장치가 구조물에 미치는 영향)

  • Park, Jin-Ho;Jung, Tae-Hwa;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.225-228
    • /
    • 2008
  • There are many studies about submerged structures or porous wave absorbers to decrease damage of coast and structures. Submerged structures and porous wave absorber are decreasing energy of incoming wave by reflecting or dissipation with changing depth or with porous rubble mound. This study addresses the reflection and transmission of long wave from a trapezoidal breakwater and a vertical porous wave absorber at the same time. A systematic shape transfer is derived to determine wave reflection and transmission. And periodic solutions are matched at the slope and the front face of the absorber by assuming continuity of pressure and mass. The transmission coefficient is determined as a function of parameters describing the incoming waves, transmitting waves through the trapezoidal breakwater and the absorber characteristics.

  • PDF

Simulation of a power cycle for a single-cylinder 4-stroke cycle spark ignition engine (단기통 4사이클 스파아크 점화기관 동력사이클의 시뮬레이션)

  • 조양수;유병철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.47-61
    • /
    • 1983
  • In this paper the simulation of a thermodynamic power cycle for a 4-stroke, single-cylinder, spark-ignition engine was studied. In this simulation the cylinder volume was restricted to two zones, a burnt and an unburnt zone, and the convective heat transfer from cylinder contents to surroundings was considered. The chemical species in burnt gas considered was 12 species including H$_{2}$O, H$_{2}$, OH, H, N$_{2}$, NO, N, CO$_{2}$, CO, $O_{2}$, O and Ar. Using this model, computer program for compression, ignition and expansion processes was composed and pressure, temperature and composition of cylinder gas at each crank angle were computed. The composition of CO$_{2}$, CO, $O_{2}$ in the burnt gas when exhaust valve opens, the maximum temperature, the maximum flame speed and the combustion duration were also computed as a function of equivalence ratio. The relation between burnt mass fraction and burnt volume fraction was also computed.

  • PDF

TWO TYPES OF ACTIVE NOISE CONTROL SYSTEM USING MFB LOUDSPEAKER

  • Nishimura, Yoshitaka;Shimada, Yasuyuki;Usagawa, Tsuyoshi;Ebata, Masanao
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.764-769
    • /
    • 1994
  • The impedance of an electro-acoustic transducer can be controlled by motional feedback, and the noise in a duct can be reduced actively by adjusting the impedance using an additional sound. In this paper, two approaches for active noise control using motional feedback (MFB) loudspeaker are described. First configuration uses an external sensor to pickup of source directly. In this configuration, the adaptation of controller is necessary to compensate the change of transfer function from noise source to control poing. The second configuration uses a new adaptive algorithm specialized for peridic noise. Because this configuration does not require any reference input and the error sensor couples very tightly with control loudspeaker, this MFB system itself is independent of the duct condition. No microphone are required in both configurations, so that a more reliable and stable active control system can be realized under severe conditions such as high pressure, high temperature, dust, flow and so on.

  • PDF

Parametric Study of DF-$CO_2$ Transfer Chemical Laser by the Numerical Model Simulation

  • Kim, Sung-Ho;Cho, Ung-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.527-530
    • /
    • 1990
  • The effects of the concentration and the pressure of reactants on laser output were reported in the previous study. The present study is made of the following main parameters on laser characteristics; the initial temperature of the reaction mixture, inert gas (He) added in the reaction mixture, and the level of initiation as a function of time. As the initial temperature of reaction mixture decreases, both the output energy and the duration time increase. Especially, the output energy is linearly proportional to the inverse of the initial temperature. In order to obtain a proper lasing for a given condition, a sufficient amount of He must be added: The optimum ratio of [He] to $[D_2\;+\;F_2\;+\;CO_2]$ is found to be greater than 2. In addition, the time dependence of level of initiation (TDLI) shows no significant difference in total output energy from that of the premixed model, but only the power profile.

Research on the Development of Automated Multifunction-Integrated Motion Bed (자동화된 다기능 통합 전동 침대 개발에 대한 연구)

  • Lee, Youngdae;Choi, Moonsoo;Jang, Ilhwan;Kim, Chang-Young;Choi, Dong-Soo;Kim, Minsung;Kim, Wonjoon;Kim, Dong-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.215-222
    • /
    • 2018
  • Recently, various motion beds have been actively developed and popularized. The motion bed has the functions of height adjustment, back plate rising, knee lifting, tilt function and left / right rotation, and the remote control can conveniently be used by the patient himself or the caregiver to move the patient. However, since the medical bed for use does not have a function of preventing pressure ulcers, exchanging sheets, and transferring patients, it is necessary to disperse body pressure by using a pressure ulcer prevention matrix to prevent pressure ulcers. However, it is accompanied by muscle strength and hard work, and nurses are avoiding difficult nursing care. In this study, we developed the first prototype in the world and confirmed that the system works normally with the goal of developing multifunctional beds that automatically perform the prevention of bed sores, the exchange of sheets and the transfer of patients in order to facilitate such nursing work. It is anticipated that the proposed multifunctional motorized bed in the future will be a model of a medical robot for smart healthcare.

The Evaluation of Artificial Lung Using Blood Substitutes (대체혈액을 이용한 인공폐의 평가에 관한 연구)

  • Kim K.B.;Hong S C.;Kim M.H.;Jheong G.R.;Lee S.C.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.311-320
    • /
    • 2000
  • In this paper a newly designed oxygenator module was used to perform the experiments for pressure drop and oxygen transport in order to evaluate the efficiency of the artificial lung. Also, distilled water. sodium sulfite solutions used in this experiment were evaluated for the performance of other artificial lungs. Substituted bloods have many advantages over whole blood in studying pressure drop and oxygen uptake. They are relatively inexpensive, and require fewer variables to be controlled. Furthermore, deoxygenation is not necessary when those solutions are used. In addition to these advantages. assays and interpretation of the experimental results are relatively easy. In the case of using the sodium sulfite solution having the same oxygen partial pressure as whole blood. the oxygen transfer rate of the sodium sulfite solution was basically same as that of whole blood. It was concluded in evaluating the function of artificial lungs that the sodium sulfite solution was suited for measuring oxygen transfer rate. In our module, artificial blood was flowed into the outside of hollow fiber membrane. The artificial lung created in this experiment showed that pressure drop was reduced to $1/3\~1/6$ of that compared to the inside-flow case.

  • PDF