• Title/Summary/Keyword: pressure rise rate

Search Result 279, Processing Time 0.032 seconds

Carbon Monoxide Emission and Radiation Properties in Ceramic Fiber Radiant Burner (세라믹 화이버 버너의 CO 배출과 복사강도 특성)

  • Jeong, Yong-Ki;Kim, Young-Soo;Lee, Dae-Rae;Yang, Dae-Bong;Ryu, Jung-Wan;Yun, Alexander;Chang, Young-June;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.176-183
    • /
    • 2007
  • An experimental study was performed to investigate the effects of mixing quality, inlet pressure, nozzle diameter on CO emission and radiation characteristics in porous ceramic fiber radiant burners. Observations of combustion characteristics occurring inside the burner system which was insulated fiber mat, were investigated by measuring temperature, CO emission and radiation characteristics. Combustion was achieved at the firing rate of $88{\sim}99$ kcal/hr, inlet pressure of $100{\sim}250$mm$H_2O$. CO emissions were found to be strongly dependent on the operating conditions. There was a tendency that CO concentration increased as the firing rate increases. The reason for rise of CO concentration is that it becomes the relatively rich condition. The fiber burner exhibit significant both spectral intensity peaks in the bands at 2.5${\mu}m$ and 4.0${\mu}m$ relatively, There is a small difference in the variable mixing tube. However spectral intensity increased with the firing rate.

  • PDF

Performance Measurements of A Stirling Engine for Household Micro Combined Heat and Power with Heat Source Temperatures and Cooling Flow Rates (가정용 열병합 발전을 위한 스털링 엔진의 열원 온도 및 냉각수 유량에 따른 성능 실험)

  • Sim, Kyuho;Kim, Mingi;Lee, Yoon-Pyo;Jang, Seon-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • A Beta-type Stirling engine is developed and tested on the operation stability and cycle performance. The flow rate for cooling water ranges from 300 to 1500 ml/min, while the temperature of heat source changes from 300 to $500^{\circ}C$. The internal pressure, working temperatures, and operation speed are measured and the engine performance is estimated from them. In the experiment, the rise in the temperature of heat source reduces internal pressure but increases operation speed, and overall, enhances the power output. The faster coolant flow rate contributes to the high temperature limit for stable operation, the cycle efficiency due to the alleviated thermal expansion of power piston, and the heat input to the engine, respectively. The experimental Stirling engine showed the maximum power output of 12.1 W and the cycle efficiency of 3.0 % when the cooling flow is 900 ml/min and the heat source temperature is $500^{\circ}C$.

Effect of Pressure Rise Time on Tidal Volume and Gas Exchange During Pressure Control Ventilation (압력조절환기법에서 압력상승시간(Pressure Rise Time)이 흡기 일환기량 및 가스교환에 미치는 영향)

  • Jeoung, Byung-O;Koh, Youn-Suck;Shim, Tae-Sun;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong;Lim, Chae-Man
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.5
    • /
    • pp.766-772
    • /
    • 2000
  • Background : Pressure rise time (PRT) is the time in which the ventilator aclieves the set airway pressure in pressure-targeted modes, such as pressure control ventilation (PCV). With varying PRT, in principle, the peak inspiratory flow rate of the ventilator also varies. And if PRT is set to a shorter duration, the effective duration of target pressure level would be prolonged, which in turn would increase inspiratory tidal volume(Vti) and mean airway pressure (Pmean). We also postulated that the increase in Vti with shortening of PRT may relate inversely to the patients' basal airway resistance. Methods : In 13 paralyzed patients on PCV (pressure control 18$\pm$9.5 cm $H_2O$ $FIO_2\;0.6\pm0.3$, PEEP 5$\pm$3 cm $H_2O$, f 20/min, I : E1 : 2) with Servo 300 (Siemens-Elema, Solna, Sweden) from various causes of respiratory failure, PRT of 10 %, 5 % and 0 % were randomly applied. At 30 min of each PRT trial, peak inspiratory flow (PIF, L/sec), Vti (ml), Pmean (cm $H_2O$) and ABGA were determined. Results : At PRT 10%, 5%, and 0%, PIF were 0.69$\pm$0.13, 0.77$\pm$0.19, 0.83$\pm$0.22, respectively (p<0.001). Vti were 425$\pm$94, 439$\pm$101, 456$\pm$106, respectively (p<0.001), and Pmean were 11.2$\pm$3.7, 12.0$\pm$3.7, 12.5$\pm$3.8, respectively (p<0.001). pH were 7.40$\pm$0.08, 7.40$\pm$0.92, 7.41$\pm$0.96, respectively (p=0.00) ; $PaCO_2$ (mm Hg) were 47.4$\pm$15.8, 47.2 $\pm$15.7, 44.6$\pm$16.2, respectively (p=0.004) ; $PAO_2-PaO_2$ (mm Hg) were 220$\pm$98, 224$\pm$95, 227$\pm$94, respectively (p=0.004) ; and $V_n/V_T$ as determined by ($PaCO_2-P_E-CO_2$)/$PaCO_2$ were 0.67$\pm$0.07, 0.67$\pm$0.08, 0.66$\pm$0.08, respectively (p=0.007). The correlation between airway resistance and change of Vti from PRT 10% to 0% were r= -0.243 (p=0.498). Conclusion : Shortening of pressure rise timee during PCV was associated with increased tidal volume, increased mean airway pressure and lower $PaCO_2$.

  • PDF

터보펌프 인듀서의 유동해석

  • Choi, Chang-Ho;Hong, Soon-Sam;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.25-32
    • /
    • 2003
  • In the present paper, a computational study on the hydrodynamic behavior of the inducer are presented including the effect of the mass flow rate. The adopted inducer showed very low head rise with high volume flow rates, which may be caused by the small passage area near the trailing edge. The static pressure distributions at the shroud surface are compared with experimental results showing very good agreements. The overall performance of the inducer such as, efficiency, head rise is also compared with experiments. The computational results are generally in good agreements with experimental ones near the design point, but at the high flow rate, the two results shows discrepancy.

  • PDF

The Development of High Pressure Long Distance Fire-fighting Hose with Phosphorescent Performance (축광 성능을 갖는 고압용 장거리 호스 개발에 관한 연구)

  • Han, Yong-Taek;Na, Byung-Gyun;Choi, Jin-Seong;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.63-69
    • /
    • 2017
  • This study describes the development of a long-distance hose for ultra-high pressure operation, which can be used in conjunction with an ultra-high pressure pump and can be effectively applied to the fire suppression of high-rise buildings and a long, large tunnels. Also, it has phosphorescent properties, which can help to secure the withdrawal route of the fire-fighters when they are threatened by the fire. We developed an ultra-high pressure hose aiming at a pressure of 3 MPa and a flow rate of 2000 lpm and developed an ultra-high pressure fire hose that can withstand this very high pressure by using a double jacket, triple polyurethane coating and warf (Wp) of 52. In order to ensure the performance of the developed ultra-high pressure hose, its structure, appearance, leakage at high pressure, length and elongation were inspected by a certified certification agency, who also subjected it to a peeling test, friction test, breaking pressure test and free fall test. Also, it was studied in addition to the luminescent high-pressure hose for fire-fighting. In the phosphorescence test, the luminance measurement value was more than the reference value of the luminance test after 40 minutes, which confirmed that its performance was satisfactory for fire-fighting products. In the future, if such an ultra-high pressure fire hose were commercialized and applied in the field, it could contribute to securing improved fire suppression and safer exit from fires, as compared to the fire hoses currently used in the suppression of fires in skyscraper buildings and long tunnels.

Study on the Improvement of Milling Recovery and Performance(I) -Operational Factors Affecting Rice Milling Performance- (도정수율과 성능향상을 위한 연구(I) -벼의 도정성능에 영향을 주는 작동요인-)

  • 정창주;류관희;박예린;이성범
    • Journal of Biosystems Engineering
    • /
    • v.5 no.2
    • /
    • pp.1-14
    • /
    • 1980
  • This study was carried out to investigate the effects of the counter-pressure setting and the roller speed of a rice whitening machine on the head rice recovery. milling capacity and milling efficiency, and also to find out the optimum operational conditions of the machine. The radial pressure inside the whitening chamber and the outlet axial pressure were measured to study their relationships with the head rice recovery, milling capacity and milling efficiency. The results of the study are summarized as follows. (1) The most important factor in rice whitening was the counter-pressure setting. It significantly affected the head rice recovery. (2) The roller speed significant affected the milling capacity and milling efficiency , but it did not affected the head rice recovery. (3) Both the radial pressure and the outlet axial pressure were affected by the counter-pressure setting but not by the roller speed. Both of them increased almost linearly with the counter-pressure setting. There was a significant correlation between the radial pressure and the outlet axial pressure. (4) The flow rate through the whitening chamber when the feed gate was fully opened increased with the roller speed, but it was not affected by the counter-pressure setting. (5) The head rice recovery decreased as the counter-pressure setting increased , but it was not affected by the roller speed. The reason could be explained by the fact that the radical pressure increased only with the counter-pressure setting. (6) The milling capacity increased with the counter-pressure setting and linearly with the roller speed. The milling efficiency generally increased with both the counter-pressure setting and the roller speed. However, the effect of roller speed was negligible at the higher counter-pressure setting. The temperature rise inside the whitening chamber was moderate with the mean of 11.3℃ (range 5.6-18.3℃) even though it increased slightly with the roller speed. Considering the head rice recovery and milling efficiency, the optimum operational conditions of the machine appeared to be the counter-pressure setting of 67g/㎠ and the roller speed of 1,050rpm. Neglecting the small difference in the head rice recovery , the greater milling capacity could be obtained at the counter-pressure setting of 85g/㎠ with the roller speed of 850-1050rpm.

  • PDF

Study of the Unsteady Gas Flow in a Critical Nozzle (임계노즐에서 발생하는 비정상유동에 관한 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.337-345
    • /
    • 2002
  • The present study addresses a computational result of unsteady gas flow through a critical nozzle. The axisymmetric, unsteady, compressible, Wavier-Stokes equations are solved using a finite volume method that makes use of the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral scheme for time derivatives. The steady solutions of the governing equation system are validated with the previous experimental data to ensure that the present computational method is valid to predict the critical nozzle flows. In order to simulate the effects of back pressure fluctuations on the critical nozzle flows, an excited pressure oscillation with an amplitude and frequency is assumed downstream of the exit of the critical nozzle. The results obtained show that for low Reynolds numbers, the unsteady effects of the pressure fluctuations can propagate upstream of the throat of critical nozzle, and thus giving rise to the applicable fluctuations in mass flow rate through the critical nozzle, while for high Reynolds numbers, the pressure signals occurring at the exit of the critical nozzle do not propagate upstream beyond the nozzle throat. For very low Reynolds number, it is found that the sonic line near the throat of the critical nozzle remarkably fluctuateswith time, providing an important mechanism for pressure signals to propagate upstream of the nozzle throat, even in choked flow conditions. The present study is the first investigation to clarify the unsteady effects on the critical nozzle flows.

  • PDF

Effect of the Brain Death on Hemodynamic Changes and Myocardial Damages in Canine Brain Death Model -Hemodynamic and Electrocardiographic Changes in the Brain Death Model Caused by Sudden Increase of Intracranial Pressure- (잡견을 이용한 실험적 뇌사모델에서 뇌사가 혈역학적 변화와 심근손상에 미치는 영향 -제1보;급격한 뇌압의 상승에 의한 뇌사모델에서의 혈역학적 및 심전도학적 변화-)

  • 조명찬
    • Journal of Chest Surgery
    • /
    • v.28 no.5
    • /
    • pp.437-442
    • /
    • 1995
  • We developed an experimental model of brain death using dogs. Brain death was caused by increasing the intracranial pressure[ICP suddenly by injecting saline to an epidural Foley catheter in five female mongrel dogs[weight, 20-25Kg .Hemodynamic and electrocardiographic changes were evaluated continuously during the process of brain death. 1. Abrupt rise of ICP after each injection of saline followed by a rapid decline to a new steady-state level within 15 minutes and the average volume required to induce brain death was 7.6$\pm$0.8ml.2. Body temperature, heart rate, mean pulmonary arterial pressure, left ventricular[LV enddiastolic pressure and cardiac output was not changed significantly during the process of brain death, but there was an increasing tendency.3. Mean arterial pressure and LV maximum +dP/dt increased significantly at the time of brain death.4. Hemodynamic collapse was developed within 140 minutes after brain death.5. Marked sinus bradycardia followed by junctional rhythm was seen in two dogs and frequent VPB`s with ventricular tachycardia was observed in one dog at the time of brain death. Hyperdynamic state develops and arrhythmia appears frequently at the time of brain death. Studies on the effects of brain death on myocardium and its pathophysiologic mechanism should be followed in the near future.

  • PDF

Critical Shoulder Height of Raceway in Ball Bearing Considering Elastohydrodynamic Lubrication

  • Kim, Kyeongsoo;Kim, Taewan
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.281-286
    • /
    • 2022
  • In this study, the effects of Elasto-hydrodynamic lubrication pressure on the critical shoulder height of raceway in an angular contact ball bearing were investigated. Both 3D contact analyses using an influence function and the EHL analysis were conducted for the contact geometry between the ball and raceways. The pressure distributions by 3D contact analysis and EHL analysis for an example bearing were compared. The effect of ellipse truncation on the minimum film thickness also investigated from EHL analysis. The critical shoulder height in the dry contact and the EHL state were compared for various applied loads. It is shown that when the ellipse truncation occurs, the pressure spike for the EHL conjunction is higher than that for the dry contact, and its location moves more inward of the contact center. The steep pressure gradients would increase the flow rate, so in order to maintain flow continuity a significant reduction in film thickness and an abrupt rise in pressure occurs in the edge of shoulder. Significant reduction of the minimum film thickness occurs near the edge of shoulder. The critical shoulder heights in the EHL state are calculated as higher values compared with in the dry contact. This results shows that the determination of critical shoulder height by the EHL analysis is more proper.

Surface Modification of Screen-Mesh Wicks to Improve Capillary Performance for Heat Pipes (히트파이프 모세관 성능 개선을 위한 스크린-메쉬 윅의 표면 개질)

  • Jeong, Jiyun;Lim, Hyewon;Kim, Hyewon;Lee, Sangmin;Kim, Hyungmo
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.185-190
    • /
    • 2022
  • Among the operating limits of a heat pipe, the capillary limit is significantly affected by the characteristics of the wick, which is determined by the capillary performance. The major parameters for determining capillary performance are the maximum capillary pressure and the spreading characteristics that can be expected through the wick. A well-designed wick structure improves capillary performance and helps improve the stability of the heat pipe by enhancing the capillary limit. The capillary performance can be improved by forming a porous microstructure on the surface of the wick structure through surface modification techniques. In this study, a microstructure is formed on the surface of the wick by using a surface modification method (i.e., an electrochemical etching process). In the experiment, specimens are prepared using stainless-steel screen mesh wicks with various fabrication conditions. In addition, the spreading and capillary rise performances are observed with low-surface-tension fluid to quantify the capillary performance. In the experiments, the capillary performance, such as spreading characteristics, maximum capillary pressure, and capillary rise rate, improves in the specimens with microstructures formed through surface modification compared with the specimens without microstructures on the surface. The improved capillary performance can have a positive effect on the capillary limit of the heat pipe. It is believed that the surface microstructures can enhance the operational stability of heat pipes.