• Title/Summary/Keyword: pressure reduction

Search Result 2,676, Processing Time 0.026 seconds

An Experimental Study on the Performance of Expandable Steel Pipe Pile (확장형 강관말뚝의 성능에 대한 실험적 연구)

  • Kim, Junghoon;Kim, Uiseok;Kim, Jiyoon;Kang, Minkyu;Choi, Hangseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • Expandable steel pipe piles are installed by inserting expansion equipment to increase the cross-sectional area of steel pipes, which can improve the pile performance compared to micro-piles. In this paper, a hydraulic expansion device was developed to expand steel pipe piles in practice. A series of laboratory and field tests were conducted to verify the performance of the developed expansion device to expand steel pipes. The expansion capability and expandable range was evaluated by measuring the strain and expansion time at the maximum pressure of the hydraulic expansion device. The thinner steel pipe, the larger strain but longer expansion time required in the test. For example, the 4.0-mm-thick steel pipe showed strain reduction by 30% and a decrease in the required expansion time by 40% compared to the 2.9-mm-thick steel pipe. In addition, in-situ expansion tests were performed to verify the expandability of steel pipes under the ground, and the exhumed specimen showed clear expanded sections. The structural integrity was determined by comparing the material performance the original and expanded specimens.

The Changes of the Heart Rate, Hand Function, and Health related Quality of Life of the People with Intellectual Disability through the Increase of the Auditory Stimulation (청각자극 증가에 따른 지적장애인의 심박수와 손 기능, 건강관련 삶의 질의 변화)

  • Son, Sung-Min;Kang, Jin-Ho;Bak, Ah-Ream
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.5
    • /
    • pp.217-227
    • /
    • 2020
  • The purpose of the study is to analyze the changes of the heart rate, hand function, and health related quality of life of the people with intellectual disability through the increase of the auditory stimulation. The subjects were 16 people with intellectual disability. The increase of the auditory stimulation was modulated through the music sound and the intensity was consisted of 60dB, 65dB and 70dB. The wist heart rate and blood pressure monitor was used to measure the heart rate during the application of the auditory stimulation increase. The hand function of right and left hand was measured by the Purdue pegboard. Health related of quality of life was measured by the short form-8 health survey. As the results, the increase of the heart rate was showed by the increase of the auditory stimulation and the decrease of the hand function and health related quality of life was showed. For these, the increase of the auditory stimulation acts as a psychological distress, thereby the increase of the heart rate and the reduction of the hand function and health relate quality of life showed. Thus, to decrease of the heart rate and increase the hand function and the health related quality of life of the people with intellectual disability, the intensity of the auditory stimulation should be considered in the environmental stimulation.

Effect of Vertically Rising Pressure Providing Spinal Canal Segment Motion on Symptom Relief in Patients with Parkinson's Disease (척추관 분절운동을 제공하는 수직 상승 압력이 파킨슨병 환자의 증상 완화에 미치는 영향)

  • Do-Hyun, Ahn;Hyeun-Woo, Choi;Kyung-Mi, Jung;Na-Young, Kim;Jong-Min, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.787-797
    • /
    • 2022
  • The purpose of this study was to confirm the reduction of pain and symptom relief of Parkinson's disease by vertically stimulating the spine through the application of a mechanical bed capable of thermal and massage stimulation. For this purpose, after confirming the segmental motion of the spine due to the use of a medical combination stimulation bed for Parkinson's disease patients, VAS, ODI, gait ability, and spiral drawing tests were performed, and the relationship between the variables was identified. In the 10-day visual analog scale and evaluation of low back pain dysfunction, the average trend of decreasing after bed use was confirmed. For walking ability, a decrease in the moving time and an increase in the moving distance were observed. In the spiral drawing test, the mean test time after using bed was significantly lower than before. As a result, it suggested the possibility of using it as an auxiliary method for recovery and pain relief of Parkinson's disease patients due to spinal segmental movement with mechanical heating and massage. However, this study is a preliminary study, and there is a small number of subjects, so additional research is needed that considers the number and condition of future subjects in detail.

The Design and Numerical Analysis Method of Inclined Self-Supported Wall Using Cement Treated Soil (시멘트혼합처리토를 활용한 경사 자립식 흙막이벽의 설계법과 해석법에 관한 연구)

  • Kang-Han Hong;Byung-Il Kim;Young-Seon Kim;Jin-Hae Kim;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.11-25
    • /
    • 2023
  • In this study, the design and numerical analysis method of the inclined self-supported wall using cement treated soil were studied. In the case of the inclined self-supported wall, the active earth pressure decreased due to the decrease in the coefficient, Ka according to the slope (angle) and the weight decreasing effect, thereby increasing the overall stability. The wall with the slope caused a change in failure mode from overturning to sliding on the excavation side, and the optimal slope was evaluated to be about 10°. Compared to the strength reduction method, the overall stability in numerical analysis results in conservative results in limit equilibrium analysis, so it was found that this method should be attended when designing. As a result of the parameteric study, the stability on bearing capacity and compression failure did not significantly increase above the slope of 10° when the surcharge was small (about 20kPa or less). In the case of cohesion of the backfill, The results similar to numerical analysis were found to consider cohesion. It was evaluated that stability on sliding, oveturning, shear, and tension failure increases in proportion to the thickness of the wall, but there is no significant change in the stability on the bearing capacity and compressive failure regardless of the thickness of the wall above a certain angle (about 10°).

Cell-cultivable ultrasonic transducer integrated on glass-coverslip (세포 배양 가능한 커버슬립형 초음파 변환자)

  • Keunhyung Lee;Jinhyoung Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.412-421
    • /
    • 2023
  • Ultrasound brain stimulation is spot-lighted by its capability of inducing brain cell activation in a localized deep brain region and ultimately treating impaired brain function while the efficiency and directivity of neural modulation are highly dependent on types of stimulus waveforms. Therefore, to optimize the types of stimulation parameters, we propose a cell-cultivable ultrasonic transducer having a series stack of a spin-coated polymer piezoelectric element (Poly-vinylidene fluoride-trifluorethylene, PVDF-TrFE) and a parylene insulating layer enhancing output acoustic pressure on a glass-coverslip which is commonly used in culturing cells. Due to the uniformity and high accuracy of stimulus waveform, tens of neuronal cell responses located on the transducer surface can be recorded simultaneously with fluorescence microscopy. By averaging the cell response traces from tens of cells, small changes to the low intensity ultrasound stimulations can be identified. In addition, the reduction of stimulus distortions made by standing wave generated from reflections between the transducers and other strong reflectors can be achieved by placing acoustic absorbers. Through the proposed ultrasound transducer, we could successfully observe the calcium responses induced by low-intensity ultrasound stimulation of 6 MHz, 0.2 MPa in astrocytes cultured on the transducer surface.

A Study on the Prevention of Liquefaction Damage of the Sheet File Method Applicable to the Foundation of Existing Structures Using the 1-G Shaking Table Experiment (1-G 진동대 실험을 이용한 기존 구조물 기초에 적용 가능한 시트파일 공법의 액상화 피해 방지에 관한 연구)

  • Jongchan Yoon;Suwon Son;Junhyeok Park;Junseong Moon;Jinman Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.7
    • /
    • pp.5-14
    • /
    • 2023
  • Recently, earthquakes have occurred frequently in worldwide. These earthquakes cause various forms of natural and physical damage. In particular, liquefaction in which the ground shows liquid-like behavior causes great damage to the structure. Accordingly, various liquefaction damage reduction methods are being studied and developed. Therefore, in this study, a method of reducing liquefaction damage in the event of an earthquake applicable to existing structures was studied using the sheet pile method. The 1-G Shaking table test was performed and the ground was constructed with Jumunjin standard sand. A two-story model structure was produced by applying the similitude law, and the input wave applied a sine wave with an acceleration level of 0.6 g and a frequency of 10 Hz. The effect of reducing structure damage according to various embedded depth ratio was analyzed. As a result of the study, the structure settlement when the ground is reinforced by applying the sheet pile method is decreased by about 71% compared to when the ground is not reinforced, and the EDR with minimum settlement is "1". In addition, as the embedded depth ratio is increased, the calculation of the pore water pressure in the ground tends to be delayed due to the sheet pile. Based on these results, the relationship with structural settlement according to the embedded depth ratio is proposed as a relational equation with the graph. The results of this study are expected to be used as basic data in developing sheet pile methods applicable to existing structures in the future.

The Effect of Rainfall on the Stability of Mudstone Slope in Consideration of Collapse Record (이암 절취사면의 붕괴이력을 고려한 강우침투에 따른 안정성 분석)

  • Jeon, Byeong-Chu;Lee, Su-Gon;Kim, Young-Muk;Chung, Sung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.55-66
    • /
    • 2009
  • At the mudstone slope located on the roadside of the Seokri area in Donghae-myeon, Pohang, Gyeongsangbuk-do, this study was performed to analyze the effects of rainfall on the stability of slope through seepage analysis according to the precipitation type of the mudstone slope, referring to the actual case of slope failure. For this, precise geological survey, geophysical exploration and drilling survey for the slope where the failure occurred were performed and followed by analysis of detailed soil layer. For the section where failure surface located, the durability reduction of rocks was measured through slaking/swelling tests and the permeability was measured through in-situ permeability tests for each soil layer. In addition, the change of strength parameter and process of instability were analyzed by back analysis, using Talren 97 and Slope/W programs, in the slope. By applying different precipitation conditions to the geographical conditions of the slope that had actual failure records, the slope stability was analyzed by seepage analysis according to duration of rainfall and rise of groundwater level resulting from the flow of rainfall caused by development of geological structures and the slope surface condition.

Experimental Assessment of Reduction in the Negative Skin Friction Using a Pile with a Member Responding to Ground Deformation (지반 변형 대응 부재를 적용한 말뚝의 부마찰력 저감 성능의 실험적 검증)

  • Shin, Sehee;Lee, Haklin;Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.5-16
    • /
    • 2022
  • Ground in extremely cold and hot regions can sink by various environmental factors. Ground settlement can generate the negative skin friction to pile shaft, increase the base load of pile, and cut the stability of the pile. This study proposed a member responding ground deformation which can be inserted inside the pile. The member slightly compresses according to the ground settlement to reduce the negative skin friction. As the member materials, this study considered spring and spring-dashpot. To assess the ability of the member, the present research performed model tests for piles with or without the member within settled ground. In the model tests, the base load, total shaft resistance, and horizontal earth pressure were monitored and analyzed. Experimental results show that the pile with spring member can reduce the negative skin friction under small settlement conditions whereas it acts similar to the pile without the member under large settlement conditions as the spring was no longer compressed. However, the pile with the spring-dashpot member can reduce the negative skin friction continuously upon the ground settlement as the dashpot delays the load transfer to the spring and locates friction force on the unloading path.

Experimental Study on the Diagnosis and Failure Prediction for Long-term Performance of ESP to Optimize Operation in Oil and Gas Wells (유·가스정 최적 운영을 위한 ESP의 장기 성능 진단 및 고장 예측 실험 연구)

  • Sung-Jea Lee;Jun-Ho Choi;Jeong-Hwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.71-78
    • /
    • 2023
  • In general, electric submersible pumps (ESPs), which have an average life of 1.0 to 1.5 years, experience a decrease in performance and a reduction in life of the pump depending on oil and gas reservoir characteristics and operating conditions in wells. As the result, the failure of ESP causes high well workover costs due to retrieval and installation, and additional costs due to shut down. In this study, a flow loop system was designed and established to predict the life of ESP in long­term operation of oil and gas wells, and the life cycle data of ESP from the time of installation to the time of failure was acquired and analyzed. Among the data acquired from the system, flow rate, inlet and outlet temperature and pressure, and the data of the vibrator installed on the outside of ESP were analyzed, and then the performance status according to long-term operation was classified into five stages: normal, advice I, advice II, maintenance, and failed. Through the experiments, it was found that there was a difference in the data trend by stage during the long­term operation of the ESP, and then the condition of the ESP was diagnosed and the failure of the pump was predicted according to the operating time. The results derived from this study can be used to develop a failure prediction program and data analysis algorithm for monitoring the condition of ESPs operated in oil and gas wells.

Numerical Modelling of Typhoon-Induced Storm Surge on the Coast of Busan (부산 연안에서 태풍에 의한 폭풍해일의 수치모델링)

  • Cha-Kyum Kim;Tae-Soon Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.760-769
    • /
    • 2023
  • A numerical simulations were performed to investigate the storm surge during the passage of Typhoon Maemi on the coast of Busan. The typhoon landed on the southern coasts of Korean Peninsula at 21:00, September 12, 2003 with a central pressure of 950 hPa, and the typhoon resulted on the worst coastal disaster on the coast of Busan in the last decades. Observed storm surges at Busan, Yeosu, Tongyoung, Masan, Jeju and Seogwipo harbors during the passage of the typhoon were compared with the computed data. The simulated storm surge time series were in good agreement with the observations. The simulated peak storm surges were estimated to be 230 cm at Masan harbor, 200 cm at Yeosu harbor and Tongyoung harbor, and 75 cm at Busan harbor. The computed storm surges along the east coast of Busan measure 52 to 55 cm, exhibiting a gradual reduction in surge height as one moves further from the coast of Busan. Therefore, coastal inundation due to the storm surge in the semi-enclosed bay can induce great disasters, and the simulated results can be used as the important data to reduce the impact of a typhoon-induced coastal disaster in the future.