• 제목/요약/키워드: pressure ratio

검색결과 5,715건 처리시간 0.043초

The tunnel model tests of material development in different surrounding rock grades and the force laws in whole excavation-support processes

  • Jian Zhou;Zhi Ding;Jinkun Huang;Xinan Yang;Mingjie Ma
    • Geomechanics and Engineering
    • /
    • 제36권1호
    • /
    • pp.51-69
    • /
    • 2024
  • Currently, composite lining mountain tunnels in China are generally classified based on the [BQ] method for the surrounding rock grade. Increasingly, tunnel field construction is replicated indoors for scale down model tests. However, the development of analogous materials for model tests of composite lining tunnels with different surrounding rock grades is still unclear. In this study, typical Class III and V surrounding rock analogous materials and corresponding composite lining support materials were developed. The whole processes of excavation-support dynamics of the mountain tunnels were simulated. Data on the variation of deformations, contact pressures and strains on the surrounding rock were obtained. Finally, a comparative analysis between model tests and numerical simulations was performed to verify the rationality of analogous material development. The following useful conclusions were obtained by analyzing the data from the tests. The main analogous materials of Class III surrounding rock are barite powder, high-strength gypsum and quartz sand with fly ash, quartz sand, anhydrous ethanol and rosin for Class V surrounding rock. Analogous materials for rockbolts, steel arches are replaced by aluminum bar and iron bar respectively with both shotcrete and secondary lining corresponding to gypsum and water. In addition, load release rate of Class V surrounding rock should be less than Class III surrounding rock. The fenestration level had large influence on the load sharing ratio of the secondary lining, with a difference of more than 30%, while the influence of the support time was smaller. The Sharing ratios of secondary lining in Class III surrounding rock do not exceed 12%, while those of Class V surrounding rock exceed 40%. The overall difference between the results of model tests and numerical simulations is small, which verifies the feasibility of similar material development in this study.

나노초 레이저 가공을 활용한 초소수 표면 특성을 가지는 사출 금형에 관한 연구 (A Study on the Injection Mold with Superhydrophobic Surface Properties Using Nanosecond Laser Machining)

  • 박정래;김혜진;박지영;성시명;홍서연;송기혁
    • Design & Manufacturing
    • /
    • 제17권3호
    • /
    • pp.48-54
    • /
    • 2023
  • In this study, an injection mold with ultra-small surface properties was manufactured using nanosecond laser processing. A superhydrophobic characteristic analysis was performed on the PET specimen manufactured through this. To this end, a hydrophobic pattern was defined using the Cassie-Baxter model. The defined features were selected with a spot diameter of 25um and pitch spacing of 30um and 35um. As a result of the basic experiment, it was confirmed that the fine pattern shape had an aspect ratio of 1:1 when the pitch interval was 35um and 20 iterations. Through the determined processing conditions, a hydrophobic pattern was implemented on the core surface of KP4. A specimen with a hydrophobic pattern was produced through injection molding. The height of the molded hydrophobic pattern is 20 ㎛ less than the depth of the core and the contact angle measurement results are 92.1°. This is a contact angle smaller than the superhydrophobic criterion. Molding analysis was performed to analyze the cause of this, and it was analyzed that the molding was not molded due to the lack of pressure in the injection machine.

Predictors of massive transfusion protocols activation in patients with trauma in Korea: a systematic review

  • Dongmin Seo;Inhae Heo;Juhong Park;Junsik Kwon;Hye-min Sohn;Kyoungwon Jung
    • Journal of Trauma and Injury
    • /
    • 제37권2호
    • /
    • pp.97-105
    • /
    • 2024
  • Purpose: Massive transfusion protocols (MTPs) implementation improves clinical outcomes of the patient's resuscitation with hemorrhagic trauma. Various predictive scoring system have been used and studied worldwide to improve clinical decision. However, such research has not yet been studied in Korea. This systematic review aimed to assess the predictors of MTPs activation in patients with trauma in Korea. Methods: The PubMed, Embase, Cochrane Library, Research Information Sharing Service databases, KoreaMed, and KMbase were searched from November 2022. All studies conducted in Korea that utilized predictors of MTPs activation in adult patients with trauma were included. Results: Ten articles were eligible for analysis, and the predictors were assessed. Clinical assessments such as systolic and diastolic blood pressure, shock index (SI), prehospital modified SI, modified early warning system (MEWS) and reverse SI multiplied by the Glasgow Coma Scale (rSIG) were used. Laboratory values such as lactate level, fibrinogen degradation product/fibrinogen ratio, and rotational thromboelastometry (ROTEM) were used. Imaging examinations such as pelvic bleeding score were used as predictors of MTPs activation. Conclusions: Our systematic review identified predictors of MTPs activation in patients with trauma in Korea; predictions were performed using tools that requires clinical assessments, laboratory values or imaging examinations only. Among them, ROTEM, rSIG, MEWS, SI, and lactate level showed good effects for predictions of MTPs activation. The application of predictors for MTP's activation should be individualized based on hospital resource and skill set, also should be performed as a clinical decision supporting tools.

Diagnosis of Pulmonary Arterial Hypertension in Children by Using Cardiac Computed Tomography

  • Shyh-Jye Chen;Jou-Hsuan Huang;Wen-Jeng Lee;Ming-Tai Lin;Yih-Sharng Chen;Jou-Kou Wang
    • Korean Journal of Radiology
    • /
    • 제20권6호
    • /
    • pp.976-984
    • /
    • 2019
  • Objective: To establish diagnostic criteria for pulmonary arterial hypertension (PAH) in children by using parameters obtained through noninvasive cardiac computed tomography (CCT). Materials and Methods: We retrospectively measured parameters from CCT images of children from a single institution in a multiple stepwise process. A total of 208 children with mean age of 10.5 years (range: 4 days-18.9 years) were assessed. The variables were classified into three groups: the great arteries; the ventricular walls; and the bilateral ventricular cavities. The relationship between the parameters obtained from the CCT images and mean pulmonary arterial pressure (mPAP) was tested and adjusted by the children's body size. Reference curves for the pulmonary trunk diameter (PTD) and ratio of diameter of pulmonary trunk to ascending aorta (rPTAo) of children with CCT images of normal hearts, adjusted for height, were plotted. Threshold lines were established on the reference curves. Results: PTD and rPTAo on the CCT images were significantly positively correlated with mPAP (r > 0.85, p < 0.01). Height was the body size parameter most correlated with PTD (r = 0.91, p < 0.01) and rPTAo (r = -0.69, p < 0.01). On the basis of the threshold lines on the reference curves, PTD and rPTAo both showed 88.9% sensitivity for PAH diagnosis, with negative predictive values of 93.3% and 92.9%, respectively. Conclusion: PTD and rPTAo measured from CCT images were significantly correlated with mPAP in children. Reference curves and the formula of PTD and rPTAo adjusted for height could be practical for diagnosing PAH in children.

거미의 감각기관을 모사한 초민감 균열기반 진동압력센서 (Ultrasensitive Crack-based Mechanosensor Inspired by Spider's Sensory Organ)

  • 오수연;김태일
    • 마이크로전자및패키징학회지
    • /
    • 제31권1호
    • /
    • pp.1-6
    • /
    • 2024
  • 거미는 진동감각기관을 통하여 미세한 진동까지도 감지해낸다. 뛰어난 진동 감지 능력을 활용해 먹이나 포식자가 발생시키는 진동을 감지하여 공격을 계획하거나 위협을 파악하며 생존에 활용한다. 본 논문은 거미의 진동감각기관을 모사하여 개발된 초민감 진동압력센서에 대해 기술한다. 거미가 진동을 감지하는데 사용하는 감각기관에 위치한 작은 틈에 착안하여 센서에 균열을 생성하였고, 균열의 깊이를 제어하여 외부로부터 오는 압력이나 진동을 매우 민감하게 감지할 수 있는 센서를 개발하였다. 이 센서는 10 N의 인장응력을 적용하여 2%의 변형률에서 게이지 계수가 16000에 도달한다. 이는 높은 신호대잡음비를 가져 정확하게 원하는 진동을 인식할 수 있는 소자로서 외력(압력, 진동)과 생체 신호측정 등 다양한 평가를 통해 센서의 높은 민감도를 증명하였다. 이를 통하여 생체모사 기술을 활용한 새로운 센서의 개발 및 다양한 산업 분야로의 응용 가능성을 제시한다.

분사식 FRP에 의한 구조물의 보강 성능 및 반발률 평가 (Evaluation on Strengthening Capacities and Rebound Rate of Structures with Sprayed FRP)

  • 한승철;양준모;윤영수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.193-202
    • /
    • 2008
  • 본 논문은 분사식 FRP의 압축 구속효과와 휨 보강 효과 및 분사식 FRP의 반발률에 대한 실험적 연구이다. 분사식 FRP란 레진과 짧게 잘려진 섬유를 고압의 공기에 의해 적용면에 분사하여 보강하는 기법이다. 분사식 FRP의 구속 및 휨 보강 효과를 알아보기 위하여 원주형 공시체와 휨 공시체를 제작하여 FRP를 분사하여 보강하였고, 보강 재료로 유리섬유와 폴리에스테르 수지를 사용하였다. 최적의 보강 조건을 알기 위해 섬유 길이, 보강 두께, 섬유 혼입비, 콘크리트 강도에 따른 실험을 실시하였고, 분사식 FRP 보강법을 섬유 매트에 의한 보강법과 비교하였다. 또한, 분사식 FRP의 반발률 역시 평가하였다. 실험을 통하여 분사식 FRP의 최적 조건을 결정하였다. 본 연구의 분사식 FRP 보강은 유리 섬유 매트에 의한 보강법 이상의 성능을 발휘하였다.

저열 포틀랜드 시멘트를 사용한 초고강도 분체 콘크리트 개발에 관한 실험적 연구 (An Experimental Study on Developing Ultra-High Strength Powder Concrete Using Low-heat Portland Cement)

  • 조병완;윤광원;김헌;박진모
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권6호통권58호
    • /
    • pp.135-147
    • /
    • 2009
  • 본 논문에서는 저열포틀랜드 시멘트와 steel aggregates인 Ferro-Silicon, 실리카흄, 충전재로서 미세 석영과 고강도화에 따른 취성파괴 문제를 개선하기위해 강섬유를 사용하여 압축강도 400MPa이상의 초고강도 분체 콘크리트를 개발 하고자 하였다. 콘크리트의 초고강도화의 영향을 고려하여 물-시멘트비 저감이 가능한 저열포틀랜드 시멘트와 비교대상으로 보통포틀랜드 시멘트를 사용하고, 골재 대체 재료로 Ferro Silicon을 각각의 배합비, 양생조건을 달리하여 압축강도를 비교분석 하였다. 초고강도 콘크리트는 보통콘크리트와 달리 사용재료의 영향이 대단히 중요하며, SEM 촬영결과 Type III, Type IV의 C-S-H수화물이 비교적 많이 생성되었고, 고온고압양생으로 토버모라이트와 조놀라이트가 생성된것을 확인 하였다. 또한 골재의 세립화, 분체의 치밀충전화 및 반응성 재료의 사용으로 인해 페이스트가 고강도화 되고, 강섬유를 사용하여 인성을 보강하므로써, 28일 압축강도 420Mpa의 초고강도 분체콘크리트를 성공적으로 개발 하였다.

Correlation between shift work and non-alcoholic fatty liver disease among male workers in the steel manufacturing company of Korea: a cross-sectional study

  • Kiseok Kim;Yong-Jin Lee;Soon-Chan Kwon;Young-Sun Min;Hyun Kyo Lee;Gwangin Baek;Sang Hyeon Kim;Eun-Chul Jang
    • Annals of Occupational and Environmental Medicine
    • /
    • 제34권
    • /
    • pp.33.1-33.13
    • /
    • 2022
  • Background: Circadian rhythm disturbance caused by shift work has adverse effects on the metabolic homeostasis of the liver. Disruption of the metabolic homeostasis of the liver causes fat accumulation in the liver. The aim of this study was to investigate the correlation between shift work and non-alcoholic fatty liver disease (NAFLD) among male workers in the steel manufacturing industry of Korea. Methods: Based on medical examination data collected in June 2020, 2,511 male subjects from one steel manufacturing company in Korea were selected in total. NAFLD was evaluated using abdominal ultrasound, which was performed by two experienced radiologists. The multinomial logistic regression analysis was performed by adjusting for age, physical activity, smoking history, alcohol consumption, body mass index, waist circumference, blood pressure, blood glucose, lipidemia, liver function test, employment duration, and hepatotoxic materials exposure status. Results: Compared to daytime workers, the odds ratio (OR) of moderate-severe NAFLD in shift workers was 1.449 (95% confidence interval [CI], 1.028-2.043). Compared to daytime workers, the ORs of moderate-severe NAFLD were significantly higher for the group that engaged in total shift work for more than 20 years (OR, 2.285; 95% CI, 1.051-4.970), the group that was not allowed to sleep during night shift work (OR, 1.463; 95% CI, 1.030-2.078), and the group that consumed food during night shift work (OR, 1.580; 95% CI, 1.093-2.284). Conclusions: There was a correlation between shift work and moderate-severe NAFLD in male steel manufacturing workers. There will be a need for more research related to the correlation of shift work with steatohepatitis and cirrhosis in the future.

Development and application analysis of high-energy neutron radiation shielding materials from tungsten boron polyethylene

  • Qiankun Shao;Qingjun Zhu;Yuling Wang;Shaobao Kuang;Jie Bao;Songlin Liu
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2153-2162
    • /
    • 2024
  • The purpose of this study is to develop a high-energy neutron shielding material applied in proton therapy environment. Composite shielding material consisting of 10.00 wt% boron carbide particles (B4C), 13.64 wt% surface-modified cross-linked polyethylene (PE), and 76.36 wt% tungsten particles were fabricated by hot-pressure sintering method, where the optimal ratio of the composite is determined by the shielding effect under the neutron field generated in typical proton therapy environment. The results of Differential Scanning Calorimetry measurements (DSC) and tensile experiment show that the composite has good thermal and mechanical properties. In addition, the high energy-neutron shielding performance of the developed material was evaluated using cyclotron proton accelerator with 100 MeV proton. The simulation shows a 99.99% decrease in fast neutron injection after 44 cm shielding, and the experiment result show a 99.70% decrease. Finally, the shielding effect of replacing part of the shielding material of the proton therapy hall with the developed material was simulated, and the results showed that the total neutron injection decreased to 0.99‰ and the neutron dose reduced to 1.10‰ before the enhanced shielding. In summary, the developed material is expected to serve as a shielding enhancement material in the proton therapy environment.

Association between the Risk of Obstructive Sleep Apnea and Lung Function: Korea National Health and Nutrition Examination Survey

  • Jinwoo Seok;Hee-Young Yoon
    • Tuberculosis and Respiratory Diseases
    • /
    • 제87권3호
    • /
    • pp.357-367
    • /
    • 2024
  • Background: Obstructive sleep apnea (OSA) is a prevalent sleep disorder associated with various health issues. Although some studies have suggested an association between reduced lung function and OSA, this association remains unclear. Our study aimed to explore this relationship using data from a nationally representative population-based survey. Methods: We performed an analysis of data from the 2019 Korea National Health and Nutrition Examination Survey. Our study encompassed 3,675 participants aged 40 years and older. Risk of OSA was assessed using the STOP-Bang (Snoring, Tiredness during daytime, Observed apnea, and high blood Pressure-Body mass index, Age, Neck circumference, Gender) questionnaire and lung function tests were performed using a portable spirometer. Logistic regression analysis was applied to identify the risk factors associated with a high-risk of OSA, defined as a STOP-Bang score of ≥3. Results: Of 3,675 participants, 600 (16.3%) were classified into high-risk OSA group. Participants in the high-risk OSA group were older, had a higher body mass index, and a higher proportion of males and ever-smokers. They also reported lower lung function and quality of life index in various domains along with increased respiratory symptoms. Univariate logistic regression analysis indicated a significant association between impaired lung function and a high-risk of OSA. However, in the multivariable analysis, only chronic cough (odds ratio [OR], 2.413; 95% confidence interval [CI], 1.383 to 4.213) and sputum production (OR, 1.868; 95% CI, 1.166 to 2.992) remained significantly associated with a high OSA risk. Conclusion: Our study suggested that, rather than baseline lung function, chronic cough, and sputum production are more significantly associated with OSA risk.