• Title/Summary/Keyword: pressure modes

Search Result 470, Processing Time 0.029 seconds

Smart Structural Health Monitoring Using Carbon Nanotube Polymer Composites (탄소나노튜브 고분자 복합체 기반 스마트 구조건전성 진단)

  • Park, Young-Bin;Pham, Giang T.;Wang, Ben;Kim, Sang-Woo
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.1-6
    • /
    • 2009
  • This paper presents an experimental study on the piezoresistive behavior of nanocomposite strain sensors subjected to various loading modes and their capability to detect structural deformations and damages. The electrically conductive nanocomposites were fabricated in the form of a film using various types of thermoplastic polymers and multi-walled carbon nanotubes (MWNTs) at various loadings. In this study, the nanocomposite strain sensors were bonded to a substrate and subjected to tension, flexure, or compression. In tension and flexure, the resistivity change showed dependence on measurement direction, indicating that the sensors can be used for multi-directional strain sensing. In addition, the sensors exhibited a decreasing behavior in resistivity as the compressive load was applied, suggesting that they can be used for pressure sensing. This study demonstrates that the nanocomposite strain sensors can provide a pathway to affordable, effective, and versatile structural health monitoring.

Thermal-hydraulic phenomena and heat removal performance of a passive containment cooling system according to exit loss coefficient

  • Sun Taek Lim;Koung Moon Kim;Jun-young Kang;Taewan Kim;Dong-Wook Jerng;Ho Seon Ahn
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4077-4086
    • /
    • 2024
  • The natural circulation system has been widely studied for use in various applications because of its inherent advantage. However, it has a key weakness called flow instability that makes the system unstable. Through massive previous research, the mechanisms of flow instability were analyzed, but there was an ambiguous aspect related to the effect of experimental parameters on the phenomenon. Particularly, there has been no report on the heat transfer performance of the system when flow instability phenomena were present. In this study, thermal-hydraulic phenomena of a two-phase natural circulation system that functions as a passive containment cooling system (PCCS) was investigated according to experimental parameters, namely, the temperature boundary (120-158 ℃) and exit loss coefficient (0-34.5) under atmospheric pressure conditions. The experimental results showed five different flow types in the loop. The flow modes that occurred by the interaction between flashing and boiling were classified by referring to the mass flow rate, void fraction, and visualization data. The system was more unstable when the temperature boundary conditions increased, but it was more stable when the exit loss coefficient increased. These results have only been confirmed in our research. The reason for the results is that the flow conditions are located on the boundary between Density Wave Oscillation I and the stable flow region, and that boundary does not have clear criteria. In addition, comparing the heat transfer performance of a system by heat rate can confirm the effect of flow instability on the thermal performance of the passive cooling system. As a result, the high exit loss coefficient stabilizes the system better than the low case and has similar heat removal performance.

A Study on the Characteristics of Tropical Cyclone Passage Frequency over the Western North Pacific using Empirical Orthogonal Function (경험적 직교함수를 이용한 북서태평양 열대저기압의 이동빈도 특성에 관한 연구)

  • Choi, Ki-Seon;Kang, Ki-Ryong;Kim, Do-Woo;Hwang, Ho-Seong;Lee, Sang-Ryong
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.721-733
    • /
    • 2009
  • A pattern of tropical cyclone (TC) movement in the western North Pacific area was studied using the empirical orthogonal function (EOF) and the best track data from 1951 to 2007. The independent variable used in this study was defined as the frequency of tropical cyclone passage in 5 by 5 degree grid. The $1^{st}$, $2^{nd}$ and $3^{rd}$ modes were the east-west, north-south and diagonal variation patterns. Based on the time series of each component, the signs of first and second mode changed in 1997 and 1991, respectively, which seems to be related to the fact that the passage frequency was higher in the South China Sea for 20 years before 1990s, and recent 20 years in the East Asian area. When the eigen vectors were negative values in the first and second modes and TC moves into the western North Pacific, TC was formed mainly at the east side relatively compared to the case of the positive eigen vectors. The first mode seems to relate to the pressure pattern at the south of Lake Baikal, the second mode the variation pattern around $30^{\circ}N$, and the third mode the pressure pattern around Japan. The first mode was also closely related to the ENSO and negatively related to the $Ni\tilde{n}o$-3.4 index in the correlation analysis with SST anomalies.

The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin

  • Su, Naichuan;Yue, Li;Liao, Yunmao;Liu, Wenjia;Zhang, Hai;Li, Xin;Wang, Hang;Shen, Jiefei
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.3
    • /
    • pp.214-223
    • /
    • 2015
  • PURPOSE. To measure the surface loss of dental restorative zirconia and the short-term bond strength between an indirect composite resin (ICR) and zirconia ceramic after various sandblasting processes. MATERIALS AND METHODS. Three hundred zirconia bars were randomly divided into 25 groups according to the type of sandblasting performed with pressures of 0.1, 0.2, 0.4 and 0.6 MPa, sandblasting times of 7, 14 and 21 seconds, and alumina powder sizes of 50 and $110{\mu}m$. The control group did not receive sandblasting. The volume loss and height loss on zirconia surface after sandblasting and the shear bond strength (SBS) between the sandblasted zirconia and ICR after 24-h immersion were measured for each group using multivariate analysis of variance (ANOVA) and Least Significance Difference (LSD) test (${\alpha}$=.05). After sandblasting, the failure modes of the ICR/zirconia surfaces were observed using scanning electron microscopy. RESULTS. The volume loss and height loss were increased with higher sandblasting pressure and longer sandblasting treatment, but they decreased with larger powder size. SBS was significantly increased by increasing the sandblasting time from 7 seconds to 14 seconds and from 14 seconds to 21 seconds, as well as increasing the size of alumina powder from $50{\mu}m$ to $110{\mu}m$. SBS was significantly increased from 0.1 MPa to 0.2 MPa according to the size of alumina powder. However, the SBSs were not significantly different with the sandblasting pressure of 0.2, 0.4 and 0.6 MPa. The possibilities of the combination of both adhesive failure and cohesive failure within the ICR were higher with the increases in bonding strength. CONCLUSION. Based on the findings of this study, sandblasting with alumina particles at 0.2 MPa, 21 seconds and the powder size of $110{\mu}m$ is recommended for dental applications to improve the bonding between zirconia core and ICR.

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

Modeling and analysis of selected organization for economic cooperation and development PKL-3 station blackout experiments using TRACE

  • Mukin, Roman;Clifford, Ivor;Zerkak, Omar;Ferroukhi, Hakim
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.356-367
    • /
    • 2018
  • A series of tests dedicated to station blackout (SBO) accident scenarios have been recently performed at the $Prim{\ddot{a}}rkreislauf-Versuchsanlage$ (primary coolant loop test facility; PKL) facility in the framework of the OECD/NEA PKL-3 project. These investigations address current safety issues related to beyond design basis accident transients with significant core heat up. This work presents a detailed analysis using the best estimate thermal-hydraulic code TRACE (v5.0 Patch4) of different SBO scenarios conducted at the PKL facility; failures of high- and low-pressure safety injection systems together with steam generator (SG) feedwater supply are considered, thus calling for adequate accident management actions and timely implementation of alternative emergency cooling procedures to prevent core meltdown. The presented analysis evaluates the capability of the applied TRACE model of the PKL facility to correctly capture the sequences of events in the different SBO scenarios, namely the SBO tests H2.1, H2.2 run 1 and H2.2 run 2, including symmetric or asymmetric secondary side depressurization, primary side depressurization, accumulator (ACC) injection in the cold legs and secondary side feeding with mobile pump and/or primary side emergency core coolant injection from the fuel pool cooling pump. This study is focused specifically on the prediction of the core exit temperature, which drives the execution of the most relevant accident management actions. This work presents, in particular, the key improvements made to the TRACE model that helped to improve the code predictions, including the modeling of dynamical heat losses, the nodalization of SGs' heat exchanger tubes and the ACCs. Another relevant aspect of this work is to evaluate how well the model simulations of the three different scenarios qualitatively and quantitatively capture the trends and results exhibited by the actual experiments. For instance, how the number of SGs considered for secondary side depressurization affects the heat transfer from primary side; how the discharge capacity of the pressurizer relief valve affects the dynamics of the transient; how ACC initial pressure and nitrogen release affect the grace time between ACC injection and subsequent core heat up; and how well the alternative feeding modes of the secondary and/or primary side with mobile injection pumps affect core quenching and ensure stable long-term core cooling under controlled boiling conditions.

Experimental study on cooling performance characteristics of hybrid refrigeration system in a heavy duty vehicle (상용차 하이브리드 냉방시스템 냉방 성능 특성 연구)

  • Lee, Ho-Seong;Jeon, Hanbyeol;Kim, Jung-Il;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.419-425
    • /
    • 2019
  • The objective of this study was to investigate the cooling performance characteristics of a hybrid refrigeration system in a heavy duty vehicle. The tested hybrid refrigeration system had additionally an electric compressor besides the present mechanical compressor for selective use according to the operating conditions. The applied electric compressor was a scroll type and with 18.0 cc displacement. In order to analyze the performance characteristics of the hybrid refrigeration system with respect to the cooling capacity and Coefficient of Performance (COP), other components, including two different types of compressors, were installed and tested under various operating conditions such as compressor speed and air flow rate of the evaporator. When the electric compressor was operated at 4,500 rev/min, the cooling capacity was about 4.0kW and COP was 3.5. When the mechanical compressor was operated, whereas the cooling capacity was higher than the electric controlled compressor, COP was lower due to the larger displacement and higher power consumption. To analyze the hybrid system operating characteristics due to reasonable cooling capacity with electric compressor operation, the mechanical compressor and electric compressor were operated by turns every 10 minutes under certain system operating conditions. Because surge pressure occurred when both compressors were switched on, the operating strategy required some time to balance the system pressure.

Infiltration and Stability Analysis Using Double Modal Water Retention Curves for Unsaturated Slopes in Pohang (이중모드 함수특성곡선을 이용한 포항 산사태에 대한 불포화 비탈면의 침투 및 안정해석)

  • Oh, Seboong;Jang, Junhyuk;Yoon, Seokyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.695-705
    • /
    • 2024
  • As a result of Typhoon Hinnamnoh, several slope failures occurred in the Pohang region, it is necessary to perform infiltration and slope stability analyses due to the actual rainfall. In the failed sites, samples were collected, and the hydro-mechanical properties of unsaturated soil were examined. Modeling the actual behavior using a single-mode function characteristic curve was found to be inadequate, leading to the adoption of a dual-mode function characteristic curve. The dual-mode function showed better agreement with the water retention test data. We calculated the unsaturated hydraulic conductivity for single and dual modes and performed rainfall-induced infiltration analysis. The variations in saturation and pore water pressure were calculated due to rainfall for three landslide-prone areas, Stability analysis based on effective stress of unsaturated soil was conducted, and safety factors were computed over time steps. The dual-mode model successfully reproduced landslides triggered by Typhoon Hinnamnoh, while the single-mode model exhibited a minimum safety factor of 1.2-1.3, making slope failure unpredictable. The dual-mode model accurately predicted instability in the slope by appropriately accounting for pore water pressure variations during Typhoon.

Study on wind resistance performance and failure mechanism of reinforcement systems for standing seam metal roofs

  • Zhitao Zheng;Wenbing Shen;Chuang Li;Sheng Li;Hongliang Deng;Mengjie Lu;Cheng Zhang
    • Wind and Structures
    • /
    • v.39 no.4
    • /
    • pp.259-269
    • /
    • 2024
  • The current research on the wind resistance of standing seam metal roofs primarily focuses on the failure modes of the entire roof panel and the contact areas between the seams and supports, with little consideration given to the synergy between the roof seam reinforcements, the web, and the supports. As a result, the failure mechanisms of roof systems cannot be accurately represented. This paper, based on wind uplift tests and ABAQUS simulation modeling, provides a detailed analysis of the wind resistance and failure mechanisms of reinforced standing seam metal roof systems. The study reveals that the deformation and failure of the roof system under wind load can be divided into three stages: elastic deformation, plastic deformation, and failure. In the elastic deformation stage, the areas with higher stress are mainly distributed in the mid-span of the roof panels and along the ribs, where the roof stress remains below the material's yield strength, and the displacement at the roof panel seams is minimal. During the plastic deformation stage, as the load increases, significant vertical deformations appear in the roof panels, the lateral displacement at the seams gradually increases, and the stress growth is pronounced. Without reinforcement, the roof panel withstands a maximum wind pressure of 3.2 kPa, with a central vertical displacement of 109 mm, while the ultimate lateral displacement at the seams reaches 2.3 mm, resulting in unseating failure, marking the structural failure. With reinforcement, the roof panel can withstand a maximum wind pressure of 4.3 kPa, corresponding to a central vertical displacement of 122 mm. The growth of lateral displacement at the seams slows down, and the reinforcement significantly suppresses seam displacement. As the load continues to increase, the reinforcements and the web work synergistically, exhibiting reciprocating counterclockwise and clockwise rotations, with the maximum lateral displacement at the seams increasing to 3.05 mm. Ultimately, unseating occurs at the roof panel seams or tearing at the web. Therefore, the reinforcement system significantly enhances the wind resistance of the roof system, providing theoretical guidance for wind-resistant design in roofing engineering.

Difference in Patient's Work of Breathing Between Pressure-Controlled Ventilation with Decelerating Flow and Volume-Controlled Ventilation with Constant Flow during Assisted Ventilation (보조환기양식으로서 감속형유량의 압력-조절환기와 일정형유량의 용적-조절환기에서 환자의 호흡일의 차이)

  • Kim, Ho-Cheol;Park, Sang-Jun;Park, Jung-Woong;Suh, Gee-Young;Chung, Man-Pyo;Kim, Ho-Joong;Kwon, O-Jung;Rhee, Chong-H.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.6
    • /
    • pp.803-810
    • /
    • 1999
  • Background : The patient's work of breathing(WOBp) during assisted ventilation may vary according to many factors including ventilatory demand of the patients and applied ventilatory setting by the physician. Pressure-controlled ventilation(PCV) which delivers gas with decelerating flow may better meet patients' demand to improve patient-ventilator synchrony compared with volume-controlled ventilation(VCV) with constant flow. This study was conducted to compare the difference in WOBp in two assisted modes of ventilation, PCV and VCV with constant flow. Methods : Ten patients with respiratory failure were included in this study. Initially, the patients were placed on VCV with constant flow at low tidal volume($V_{T,\;LOW}$)(6-8 ml/kg) or high tidal volume($V_{T,\;HIGH}$)(10-12 ml/kg). After a 15 minute stabilization period, VCV with constant flow was switched to PCV and pressure was adjusted to maintain the same tidal volume($V_T$) received on VCV. Other ventilator settings were kept constant. Before changing the ventilatory mode, WOBp, $V_T$, minute ventilation($V_E$), respiratory rate(RR), peak airway pressure (Ppeak), peak inspiratory flow rate(PIFR) and pressure-time product(PTP) were measured. Results : The mean $V_E$ and RR were not different between PCV and VCV during the study period. The Ppeak was significantly lower in PCV than in VCV during $V_{T,\;HIGH}$. HIGH ventilation(p<0.05). PIFR was significantly higher in PCV than in VCV at both $V_T$ (p<0.05). During $V_{T,\;LOW}$ ventilation, WOBp and PTP in PCV($0.80{\pm}0.37\;J/min$, $164.5{\pm}74.4\;cmH_2O.S$) were significantly lower than in VCV($1.06{\pm}0.39J/mm$, $256.4{\pm}107.5\;cmH_2O.S$)(p<0.05). During $V_{T,\;HIGH}$ ventilation, WOBp and PTP in PCV($0.33{\pm}0.14\;J/min$, $65.7{\pm}26.3\;cmH_2O.S$) were also significantly lower than in VCV($0.40{\pm}0.14\;J/min$, $83.4{\pm}35.1\;cmH_2O.S$)(p<0.05). Conclusion : During assisted ventilation, PCV with decelerating flow was more effective in reducing WOBp than VCV with constant flow. But since individual variability was shown, further studies are needed to confirm these results.

  • PDF