• Title/Summary/Keyword: pressure load

Search Result 2,782, Processing Time 0.026 seconds

Creep Characterization of 9Cr1Mo Steel Used in Super Critical Power Plant by Conversion of Stress and Strain for SP-Creep Test (SP-Creep 시험의 응력 및 변형률 환산에 의한 초임계압 발전설비용 9Cr1Mo강의 크리프 특성 평가)

  • Baek, Seung-Se;Park, Jung-Hun;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1034-1040
    • /
    • 2006
  • Due to the need of increasing thermal efficiency, supercritical pressure and temperature have been utilized in power plants. It is well known that 9Cr1Mo steel is suitable fer use in power plants operating at supercritical conditions. Therefore, to ensure the safety and the soundness of the power plant, creep characterization of the steel is important. In this study, the creep characterization of the gCr1Mo steel using small punch creep(SP-Creep) test has been described. The applied load and the central displacement of the specimen in SP-Creep test have been converted to bearing stress and strain of uc, respectively. The converted SP-Creep curves clearly showed the typical three-stage behavior of creep. The steady-state creep rate and the rupture time of the steel logarithmically changed with the bearing stress and satisfied the Power law relationship. Furthermore, the Larson-Miller parameter of the SP-Creep test agreed with that of the tensile creep test. From the comparison with low Cr-Mo steels, the creep characteristics of 9Cr1Mo steel proved to be superior. Thus, it can be confirmed that the 9Cr1Mo steel is suitable for supercritical power plant.

Fatigue Strength of Al-5052 Tensile-Shear Specimens using a SPR Joining Method (SPR 접합법을 이용한 Al-5052 인장-전단 시험편의 피로강도)

  • Lee, Man Suk;Kim, Taek Young;Kang, Se Hyung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.9-14
    • /
    • 2014
  • Self-piercing riveting(SPR) is a mechanical fastening technique which is put pressure on the rivet for joining the sheets. Unlike a spot welding, SPR joining does not make the harmful gas and $CO_2$ and needs less energy consumption. In this study, static and fatigue tests were conducted using tensile-shear specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. During SPR joining process for the specimen, using the current sheet thickness and a rivet, the optimal applied punching force was found to be 21 kN. And, the maximum static strength of the specimen produced at the optimal punching force was 3430 N. During the fatigue tests for the specimens, interface failure mode occurred on the top substrate close to the rivet head in the most high-loading range region, but on the bottom substrate close to the rivet tail in the low -loading range region. There was a relationship between applied load amplitude $P_{amp}$ and lifetime of cycle N for the tensile-shear, $P_{amp}=3395.5{\times}N^{-0.078}$. Using the stress-strain curve of the Al-5052 from tensile test, the simulations for fatigue specimens have been carried out using the implicit finite element code ABAQUS. The relation between von-Mises equivalent stress amplitude and number of cycles was found to be ${\sigma}_{eq}=514.7{\times}N^{-0.033}$.

Plasma nitriding on chromium electrodeposit

  • Wang Liang;K.S. Nam;Kim, D.;Kim, M.;S.C. Kwon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.29-30
    • /
    • 2001
  • This paper presents some results of plasma nitriding on hard chromium deposit. The substrates were C45 steel and $30~50{\;}\mu\textrm{m}$ of chromium deposit by electroplating was formed. Plasma nitriding was carried out in a plasma nitriding system with $95NH_3{\;}+{\;}SCH_4$ atmosphere at the pressure about 600 Pa and different temperature from $450^{\circ}C{\;}to{\;}720^{\circ}C$ for various time. Optical microscopy and X-ray diffraction were used to evaluate the characteristics of surface nitride layer formed by nitrogen diffusion from plasma atmosphere inward iCr coating and interface carbide layer formed by carbon diffusion from substrate outward Cr coating. The microhardness was measured using microhareness tester at the load of 100 gf. Corrosion resistance was evaluated using the potentiodynamic measurement in 3.5% NaG solution. A saturated calomel electrode (SiCE) was used as the reference electrode. Fig.1 shows the typical microstructures of top surface and cross-section for nitrided and unnitrided samples. Aaer plasma nitriding a sandwich structure was formed consisting of surface nitride layer, center chromium layer and interface carbide layer. The thickness of nitride and carbide layers was increased with the increase of processing temperature and time. Hardness reached about 1000Hv after nitriding while 900Hv for unnitrided hard chromium deposit. X-ray diffraction indicated that surface nitrided layer was a mixture of $Cr_2N$ and CrN at low temperature and erN at high temperature (Fig.2). Anodic polarization curves showed that plasma nitriding can greatly improve the corrosion resistance of chromium e1ectrodeposit. After plasma nitriding, the corrosion potential moved to noble direction and passive current density was lower by 1 to 4 orders of magnitude compared with chromium deposit(Fig.3).

  • PDF

An experimental study on the evaluation of discharge capacity for vertical plastic drain board (연직배수재의 통수능력평가를 위한 실험적 연구)

  • Kim, Joonseok;Lee, Kangil
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.483-490
    • /
    • 2017
  • Recently, the demand for industrial and residental land are increasing with economic growth, but it is difficult to obtain the area for development with good ground condition. Various kinds of vertical drain technologies such as sand drain, sand compaction pile, packed drain, PVD are commercially available to improve the soft ground. Discharge capacity is the important factor of vertical drains. However, under field conditions, discharge capacity is changed with various reasons, such as soil condition, overburden pressure, and so on. In this paper, the experimental study was carried out to estimate the discharge capacity of four different types of PBD, PBD for double core PBD, deep type PBD, X type PBD, general type PBD. Characteristics of the discharge capacity for the surcharge load and hydraulic gradient were analysed. The double core PBD was excellent for discharge capacity in this study.

A Kinetics Analysis of Forward 11/2 Somersault on the Platform Diving (플랫폼 다이빙 앞으로 서서 앞으로 11/2회전 동작의 운동역학적 분석)

  • Jeon, Kyoung-Kyu
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.209-218
    • /
    • 2013
  • This study was to perform the kinetic analysis of forward $1\frac{1}{2}$ somersault on the platform diving. Six men's diving players of the Korea national reserve athletes participated in this study. The variables were analyzed response time, velocity, center of mass (COM), angle, center of pressure (COP) and ground reaction force (GRF) of motion. For measure and analysis of this study, used to synchronized to 4 camcorder and 1 force plate, used to the Kwon3D XP (Ver. 4.0, Visol, Korea) and Kwon GRF (Ver. 2.0, Visol, Korea) for analyzed of variables. The results were as follows; Time factor were observed in maximum knee flexion depending on the extent of use at phase 1 of take-off to execute the somersault. This enabled the subject to secure the highest possible body position in space at the moment of jumping to execute the somersault and prepare for the entry into the water with more ease. Regarding the displacement of COM, all subjects showed rightward movement in the lateral displacement during technical execution. Changes in forward and downward movements were observed in the horizontal and vertical displacements, respectively. In terms of angular shift, the shoulder joint angle tended to decrease on average, and the elbow joints showed gradually increasing angles. This finding can be explained by the shift of the coordinate points of body segments around the rotational axis in order to execute the half-bending movement that can be implemented by pulling the lower limb segments toward the trunk using the upper limb segments. The hip joint angles gradually decreased; this accelerated the rotational movement by narrowing the distance to the trunk. Movement-specific shifts in the COP occurred in the front of and vertical directions. Regarding the changes in GRF, which is influenced by the strong compressive load exerted by the supporting feet, efficient aerial movements were executed through a vertical jump, with no energy lost to the lateral GRF.

Various Modalities of Flap Surgery in Heel Pad Reconstruction (발뒤꿈치의 재건 시에 사용할 수 있는 다양한 피판술)

  • Jung, Yun-Ik;Lee, Dong-Won;Yoon, In-Sik;Rah, Dong-Kyun;Lee, Won-Jai
    • Archives of Plastic Surgery
    • /
    • v.38 no.4
    • /
    • pp.415-420
    • /
    • 2011
  • Purpose: The reconstruction of a soft tissue defect of the heel pad can be challenging. One vital issue is the restoration of the ability of the heel to bear the load of the body weight. Many surgeons prefer to use local flaps or free tissue transfer rather than a skin graft. In this study, we evaluated the criteria for choosing a proper flap for heel pad reconstruction. Methods: In this study, 23 cases of heel pad reconstruction were performed by using the flap technique. The etiologies of the heel defects included pressure sores, trauma, or wide excision of a malignant tumor. During the operation, the location, size and depth of the heel pad defect determined which flap was chosen. When the defect size was relatively small and the defect depth was limited to the subcutaneous layer, a local flap was used. A free flap was selected when the defect was so large and deep that almost entire heel pad had to be replaced. Results: There was only one complication of poor graft acceptance, involving partial flap necrosis. This patient experienced complete recovery after debridement of the necrotic tissue and a split thickness skin graft. None of the other transferred tissues had complications. During the follow-up period, the patients were reported satisfactory with both aesthetic and functional results. Conclusion: The heel pad reconstructive method is determined by the size and soft-tissue requirements of the defect. The proper choice of the donor flap allows to achieve satisfactory surgical outcomes in aesthetic and functional viewpoints with fewer complications.

An Study on the Cylinder Wall Temperature and Performance of Gasoline Engine according to Engine Speed (가솔린기관의 회전수 변화에 따른 실린더 벽면온도 변화 및 기관성능에 관한 연구)

  • Kwon, K.R.;Oho, Y.O.;Kang, N.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2002
  • The purpose of this study is preventing the stick, scuffing, scratch between piston and cylinder in advance, and obtaining data for duration test in actual engine operation. The temperature gradient in cylinder bore according to coolant temperature were measured using $1.5{\ell}$ class diesel engine. 20 thermocouples were installed 2mm deep inside from cylinder wall near top ring of piston in cylinder block, at which points major thermal loads exist. It is suggested as proper measurement points for engine design by industrial engineers. Under full load and $70^{\circ}$, $80^{\circ}C$ and $90^{\circ}C$ coolant temperature conditions, the temperature in cylinder block and engine oil increased gradually according to the increase of coolant temperature, the siamese side temperature of top dead center is $142^{\circ}C$ in peripheral distribution, that is about $20^{\circ}C$ higher than that at thrust, anti-thrust, and rear side temperature, respectively. The maximum pressure of combustion gas in $70^{\circ}C$ coolant temperature is about 2 bar lower than those of $80^{\circ}C$ and $90^{\circ}C$ coolant temperature. The engine torque in $80^{\circ}C$, $90^{\circ}C$ coolant temperature condition is about 4.9Nm higher than that of $70^{\circ}C$ coolant temperature.

  • PDF

Tribological Behaviors on nano-structured surface of the diamond-like carbon (DLC) coated soft polymer

  • No, Geon-Ho;Mun, Myeong-Un;Ahmed, Sk.Faruque;Cha, Tae-Gon;Kim, Ho-Yeong;Lee, Gwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.356-356
    • /
    • 2010
  • Tribological behaviors of the hard film on soft substrate system were explored using the hard thin film of diamond-like carbon (DLC) coated the soft polymer of polydimethysiloxane (PDMS). A DLC film with the Young's modulus of 100 GPa was coated on PDMS substrate with Young's modulus of 10 MPa using plasma enhanced chemical vapor deposition (PECVD) technique. The deposition time was varied from 10 sec to 10 min, resulting in nanoscale roughness of wrinkle patterns with the thickness of 20 nm to 510 nm, respectively, at a bias voltage of $400\;V_b$, working pressure 10 mTorr. Nanoscale wrinkle patterns with 20-100 nm in width and 10-30 nm height were formed on DLC coating due to the residual stress in compression and difference in Young's modulus. Nanoscale roughness effect on tribological behaviors was observed by performing a tribo-experiment using the ball-on-disk type tribometer with a steel ball of 6 mm in diameter at the sliding speed of 220 rpm, normal load of 1N and 25% humidity at ambient temperature of $25^{\circ}C$. Friction force were measured with respect to thickness change of coated DLC thin film on PDMS. It was found that with increases the thickness of DLC coating on PDMS, the coefficient of friction decreased by comparison to that of the uncoated PDMS. The wear tracks before and after tribo-test were analyzed using SEM and AFM.

  • PDF

The study on dynamic fracture toughness of friction-welded M.E.F. dual phase steel (복합조직강의 마찰용접부에 대한 동적파괴특성)

  • 오세욱;유재환;이경봉
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.19-27
    • /
    • 1989
  • Both the SS41 steel and the M.E.F(martensite encapsulated islands of frrite) dual phase steel made of SS41 steel by heat treatment were welded by friction welding, and then manufactured machinemade Vnotch standard Charpy impact specimens and precracked with a fatigue system at BM(base metal), HAZ(heat affected zone) and WZ(weld interface Zone). The impact test of them was performed with an instrumented impact test machine at a number of temperatures in constant loading velocity and the dynamic fracture characteristics were studied on bases of the absorbed energy, dynamic fracture toughness and fractography from the test. The results obtained are as follows; At the room temperature, the absorbed energy is HAZ.geq.WZ.geq.BM in case of the M.E.F. dual phase steel: BM.geq.HAZ.geq.WZ in case of the SS41 steel, HAZ.geq.BM.geq.WZ at the low temperature. The absorbed energy is decreased markedly with the temperature lowering; it is highly dependent on the temperature. The dynamic fracture toughness of the M.E.F. dual phase steel is HAZ.geq.WZ.geq.BM at the room temperature; BM.geq.WZ.geq.HAZ below-60.deg. C. Therefore the reliability of friction welding is uncertain at the low temperature(below-60.deg. C). The dynamic fracture toughness of the SS41 steel; HZA.geq.WZ.geq.BM at overall temperature region. The flaw formed by rotational upsetting pressure was shown y SEM; in this region. The absorbed energy per unit area and dynamic fracture toughness were low relative to other region.

  • PDF

A Study on the Supporting Effect of a Spiral Bolt as a Support System (Spiral bolt의 지보효과에 관한 연구)

  • Cho, Young-Dong;Kang, Choo-Won;Kim, Jae-Woong
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.332-343
    • /
    • 2010
  • This study aims to evaluate the supporting effect of a spiral bolt that is superior to a rock bolt in terms of constructability, stability, environmental and economic aspects as a support system. This study thus analyzed the mechanical properties of a rock bolt which is widely used as a support and a spiral bolt. In addition, laboratory pull-out tests were conducted for the evaluation of properties of the supports such as displacement, pull-out load, confining pressure etc. Moreover, the differences between a rock bolt and a spiral bolt were drawn by comparing the two results of laboratory pull-out tests and in-situ pull-out tests. Then, the differences of the supporting effect of the two supports were analysed by comparing the results of the two pull-out tests with a numerical analysis using FLAC3D.