• Title/Summary/Keyword: pressure field

Search Result 3,778, Processing Time 0.03 seconds

A method for estimating the shape of a finite cylindrical radiator from its pressure field (방사 음장을 이용한 원통형 방사체의 형상 추정)

  • Kim, Koo-Hwan;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.718-722
    • /
    • 2014
  • A method for estimating the cylindrical shape of a sound radiator is presented. It assumes that sound field can be measured by a linear array. A sound field, due to the radiator vibrating with uniform velocity, can be determined by its shape, size, and orientations. Measured data also can be varying from the array's position. To predict the shape of radiators from these measured data, mathematical relation between geometric parameter and measured information is needed. Assume that a radiator is cylinder, the magnitude and phase of measured pressure is related with the length and diameter of radiator, respectively. In this paper, the method for estimating length and shape of a finite cylinder by using its radiated pressure is proposed and verified through experiment.

  • PDF

Field Experiments on Features of Airflow through Open Door in Pressure Differential System (급기가압 제연시스템의 피난문 개방시 방연풍속 형성특성에 대한 현장실험)

  • Kim, Jung-Yup;Rie, Dong-Ho;Kim, Ha-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.463-467
    • /
    • 2008
  • The fact that the major cases of life casualties are from smoke in the fire accidents and the expected steep increase of skyscrapers, huge spaces, multiplexes and huge scaled underground spaces demand establishment of efficient smoke countermeasure. The field experiments on pressure differential systems for smoke management in two high buildings of 20 stories and 21 stories are carried out to evaluate the features of airflow through open door between accommodation and lobby. The procedures and results of experiments are presented.

  • PDF

Simultaneous Synthesis and Densification of Ti5Si3 and Ti5Si3-20 vol%Nb Composite by Field-Activated and Pressure-Assisted Combustion

  • Shon, In Jin;Kim, Hwan Chal;Rho, Dae Ho
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.148-154
    • /
    • 1999
  • A method to simultaneously synthesize and consolidate $Ti_5Si_4 \;and\; Ti_5Si_3$-20 vol%Nb composite from powders of Ti, Si and Nb was investigated. Combustion synthesis was carried out under the combined effect of an electric field and mechanical pressure. Highly dense $Ti_5Si_4 \;and\; Ti_5Si_3$-20 vol% Nb with relative densities up to 98% was produced from powders of Ti, Si and Nb under the application of 60 MPa pressure and 3000A current on the reactant.

  • PDF

Experimental Study on the Characteristics of Pressure Fluctuation in the Combustion Chamber with Branch Tube (분기관을 가진 연소 챔버 내 압력변동 특성에 관한 실험적 연구)

  • Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.552-558
    • /
    • 2009
  • An experimental study using the combustor with branch tube was conducted in order to model the industry combustor with FGR (flue gas recirculation) system and to study a thermo-acoustic instability generated by a branch tube. The branch tube is a structure used to modify a system geometry and then to change its pressure field, and the thermo-acoustic instability, usually occurs in a confined geometry, can result in serious problems on industrial combustors. Thus understanding of the instability created by modifying geometry of combustor is necessary to design and operate combustor with FGR system. Pressure fluctuation in the combustion chamber was observed according to diameter and length of branch and it was compared with the solution of 1-D wave equation. It was found that branch tube affects the pressure field in the combustion chamber, and the pressure fluctuation in the combustion chamber was reduced to almost zero when phase difference between an incipient wave in the combustion chamber and a reflected wave in the branch tube is $\pi$ at the branch point. Also, the reduction of pressure fluctuation is irrespective of the installed height of branch tube if it is below $h^*=0.9$ in the close-open tube and open-open tube.

Highly Sensitive Flexible Organic Field-Effect Transistor Pressure Sensors Using Microstructured Ferroelectric Gate Dielectrics

  • Kim, Do-Il;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.277.2-277.2
    • /
    • 2014
  • For next-generation electronic applications, human-machine interface devices have recently been demonstrated such as the wearable computer as well as the electronic skin (e-skin). For integration of those systems, it is essential to develop many kinds of components including displays, energy generators and sensors. In particular, flexible sensing devices to detect some stimuli like strain, pressure, light, temperature, gase and humidity have been investigated for last few decades. Among many condidates, a pressure sensing device based on organic field-effect transistors (OFETs) is one of interesting structure in flexible touch displays, bio-monitoring and e-skin because of their flexibility. In this study, we have investigated a flexible e-skin based on highly sensitive, pressure-responsive OFETs using microstructured ferroelectric gate dielectrics, which simulates both rapidly adapting (RA) and slowly adatping (SA) mechanoreceptors in human skin. In SA-type static pressure, furthermore, we also demonstrate that the FET array can detect thermal stimuli for thermoreception through decoupling of the input signals from simultaneously applied pressure. The microstructured highly crystalline poly(vinylidene fluoride-trifluoroethylene) possessing piezoelectric-pyroelectric properties in OFETs allowed monitoring RA- and SA-mode responses in dyanamic and static pressurizing conditions, which enables to apply the e-skin to bio-monitoring of human and robotics.

  • PDF

Waterhammer Caused by Startup and Stoppage of a Centrifugal Pump (원심펌프의 시동 및 정지에 따른 수격현상)

  • Kim, Kyung-Yup;Kim, Joum-Bea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.1 s.22
    • /
    • pp.51-57
    • /
    • 2004
  • The waterhammer has recently become more important because the pumping stations were big and the systems conveying the fluid through the large and long transmission pipelines were complex. When the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity As the pressure waves are propagating between the pumping station and the distributing reservoir, the pressure inside the pipe drops to the liquid vapor pressure with the pipeline profile, at which time a vapor cavity forms, and finally the column separation occurs. If the pressure in the pipe is less than the atmospheric pressure, the pipe can be collapsed and destroyed after the water columns separated by the vapor cavity rejoin. During the reverse flow, the pressure is so abnormally increased at the pumping station that the accident of flooding may happen due to the failure of system. In this paper, the field tests on the waterhammer by the startup, stoppage, and power failure of a centrifugal pump were carried out for Yongma transmission pumping station in Seoul. The experimental results were compared with that of the numerical calculations, in which results the procedure of controlled pump normal shut-down and the two-step closing mode of controlling the ball valve for pump emergency stop are proposed to reduce the pressure surge.

On the Thermal Low-pressure Onset using Analytical Model around Daegu in Summer (해석학적모델을 이용한 하계 대구지방의 열적저기압 형성에 관한 연구)

  • 김해동;정우식
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1133-1140
    • /
    • 2002
  • The growth and extent of the local pressure field at any point is of primary importance as it supplies the driving force for the local wind circulation which causes a medium-range transport of air pollutants. The local pressure field is produced by the variation of temperature in the lower layers of the atmosphere, and is called the thermal wave. The thermal wave is influenced by the difference in the diurnal variations between two regions with different surface condition, for example land and sea. This difference produces the land- and sea-breeze phenomenon, and brings corresponding variations in the form of the thermal wave. Daytime temperature over the inland area (Daegu) was higher than that of the coastal area (Busan). The temperature difference reached about 5~6$^{\circ}C$ in the late afternoon(30-31 May 1999). The low pressure system of Daegu was most fully developed at the time. In this study, we investigated the possibility of thermal low onset around Daegu in summer with an analytical model. The topography effect was neglected in the model. We could predict a thermal low-pressure of about 3.4hPa at Daegu with wide flat land surface, when the inland area is about 6K warmer than the coastal area temperature. The pressure decrease is somewhat less than the observed value(4~5 hPa).

Comparison of Different Permeability Models for Production-induced Compaction in Sandstone Reservoirs

  • To, Thanh;Chang, Chandong
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.367-381
    • /
    • 2019
  • We investigate pore pressure conditions and reservoir compaction associated with oil and gas production using 3 different permeability models, which are all based on one-dimensional radial flow diffusion model, but differ in considering permeability evolution during production. Model 1 assumes the most simplistic constant and invariable permeability regardless of production; Model 2 considers permeability reduction associated with reservoir compaction only due to pore pressure drawdown during production; Model 3 also considers permeability reduction but due to the effects of both pore pressure drawdown and coupled pore pressure-stress process. We first derive a unified stress-permeability relation that can be used for various sandstones. We then apply this equation to calculate pore pressure and permeability changes in the reservoir due to fluid extraction using the three permeability models. All the three models yield pore pressure profiles in the form of pressure funnel with different amounts of drawdown. Model 1, assuming constant permeability, obviously predicts the least amount of drawdown with pore pressure condition highest among the three models investigated. Model 2 estimates the largest amount of drawdown and lowest pore pressure condition. Model 3 shows slightly higher pore pressure condition than Model 2 because stress-pore pressure coupling process reduces the effective stress increase due to pore pressure depletion. We compare field data of production rate with the results of the three models. While models 1 and 2 respectively overestimates and underestimates the production rate, Model 3 estimates the field data fairly well. Our result affirms that coupling process between stress and pore pressure occurs during production, and that it is important to incorporate the coupling process in the permeability modeling, especially for tight reservoir having low permeability.

3-D Dynamic Response Characteristics of Seabed around Composite Breakwater in Relation to Wave-Structure-Soil Interaction (파랑-구조물-지반 상호작용에 의한 혼성제 주변 해저지반의 3차원 동적응답 특성)

  • Hur, Dong-Soo;Park, Jong-Ryul;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.505-519
    • /
    • 2016
  • If the seabed is exposed to high waves for a long period, the pore water pressure may be excessive, making the seabed subject to liquefaction. As the water pressure change due to wave action is transmitted to the pore water pressure of the seabed, a phase difference will occur because of the fluid resistance from water permeability. Thus, the effective stress of the seabed will be decreased. If a composite breakwater or other structure with large wave reflection is installed over the seabed, a partial standing wave field is formed, and thus larger wave loading is directly transmitted to the seabed, which considerably influences its stability. To analyze the 3-D dynamic response characteristics of the seabed around a composite breakwater, this study performed a numerical simulation by applying LES-WASS-3D to directly analyze the wave-structure-soil interaction. First, the waveform around the composite breakwater and the pore water pressure in the seabed and rubble mound were compared and verified using the results of existing experiments. In addition, the characteristics of the wave field were analyzed around the composite breakwater, where there was an opening under different incident wave conditions. To analyze the effect of the changed wave field on the 3-D dynamic response of the seabed, the correlation between the wave height distribution and pore water pressure distribution of the seabed was investigated. Finally, the numerical results for the perpendicular phase difference of the pore water pressure were aggregated to understand the characteristics of the 3-D dynamic response of the seabed around the composite breakwater in relation to the water-structure-soil interaction.

Suction Penetration Review of Circular Steel Pipes by Field Test (현장 실험을 통한 원형강관 석션관입성 검토)

  • Kim, Hyun-Joo;Choi, Jin-O
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.35-43
    • /
    • 2020
  • Currently, cofferdams of circular cross section are widely applied as temporary facilities for the installation of bridge foundations in river/sea bridge construction in Korea. Existing caisson, sheet pile, and cell type cofferdam are widely used, but these methods take a lot of time and cost for installation and dismantling. In the case of the existing sheet pile construction method, attention is needed to secure internal and external stability because of the damage to the sheet pile due to ground penetration and difficulty in connecting element members. In this study, penetration design of circular steel pipes using suction pressure was performed on the soft ground of the west coast, and it was confirmed that penetration construction using suction pressure was possible through field tests. It was confirmed that applying the ground analysis results using the cone penetration test (CPT) to the design rather than the standard penetration test (N value) results more similar to the field test results. In addition, it was confirmed that local failure of the inside of the cofferdam was induced when a suction pressure higher than the upper limit suction pressure was applied in the silty sand.