• Title/Summary/Keyword: pressure drag

Search Result 499, Processing Time 0.021 seconds

A Propeller Design Method with a New Blade Section : Applied to Container Ships (새로운 날개단면을 이용한 프로펠러 설계법 - 콘테이너선에 응용 -)

  • J.T. Lee;M.C. Kim;J.W. Ahn;S.H. Van;H.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.40-51
    • /
    • 1991
  • A Propeller design method using the newly developed blade section(KH18), which behaves better cavitation characteristics, is presented. Experimental results for two-dimensional foil sections show that the lift-drag curve and the cavitation-free bucket diagram of the new blade section are wider comparing to those of the existion NACA sections. This characteristic of the new section is particularly important for marine propeller applications since angle of attack variation of the propeller blade operating behind a non-uniform ship's wake is relatively large. A lifting surface theory is used for the design of a propeller with the developed section for a 2700 TEU container ship. Since the most suitable chordwise loading shape is not known a priori, chordwise loading shape is chosen as a design parameter. Five propellers with different chordwise loading shapes and different foil sections are designed and tested in the towing tank and cavitation tunnel at KRISO. It is observed by a series of extensive model tsets that the propeller(KP197) having the chordwise loading shape, which has less leading edge loading at the inner radii and more leading edge loading at the outer radii of 0.7 radius, has higher propulsive efficiency and better cavitation characteristics. The KP197 propeller shows 1% higher efficiency, 30% cavitation volume reduction and 9% reduction of fluctuating pressure level comparing to the propeller with an NACA section. More appreciable efficiency gain for the new blade section propeller would be expected by reduction of expanded blade area considering the better cavitation characteristics of the new blade section.

  • PDF

Stress Analysis of a Window Cleaning Robot using 3D Modeling and Improvement Plan (3D 모델링을 통한 유리창 청소로봇의 응력해석 및 설계 개선방안 도출)

  • Kim, Kyoon-Tai;Jun, Young-Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.161-168
    • /
    • 2018
  • Recently, a prototype of a guide rail type window cleaning robot was developed, and is currently undergoing field testing. The size and the load of the robot have not yet been optimized. In this study, a stress analysis was performed to derive quantitative data to improve the current window cleaning robot and secure its structural safety. Through the analysis of its own weight, resistance to wind speed, and other factors, it was found that the robot can be improved in terms of the drooping caused by its own weight and the drag force against wind pressure. The analysis results obtained will be directly applied to improve the design of the window cleaning robot, and it is expected that this will advance the completeness of the robot's design.

Analysis of Two-Dimensional Flow around Blades with Large Deflection in Axial Turbomachine (전향도가 큰 축류터보기계의 블레이드 주위의 유동해석)

  • 원승호;손병진;최상경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.229-240
    • /
    • 1991
  • The large camber angle theory of turbomachine blade of compressor has been developed recently for the two-dimensional flow by Hawthorn, et al. However, in the above theory it was assumed that the fluid was incompressible and inviscid, and the blades had no thickness. In this study, the flow in a blade cascade being mounted in parallel fashion with blade of arbitrary thickness is studied in order to determine the effects of the camber angle on the performance characteristic of the blade section under the consideration of compressibility and viscosity of fluid. The panel method is used for potential flow analysis. The flow in the boundary-layer is obtained by solving the integral boundary-layer structure through the laminar, transitional , and turbulent flow using the pressure field determined from the potential flow. And then the viscous-inviscid interaction scheme is used for interaction of these two flows. For the determination of the variation in the outlet fluid angle influenced by deviation in cascade flow, the superposition method which is used for single foil is introduced in this analysis. By the introduction of this method, the effects of the deviation on outlet fluid angle and the resulting fluid angle are made to adjust for oneself through the calculation. As the result of this study, the blade of large camber angle, large incidence angle, large pitch-chord ratio has large viscous and compressible effect than those of small camber angle. Lift force increase as camber angle increases, but above 60.deg. of camber angle, lift force decrease as camber angle increases. But drag force increases linearly with camber angle increases in the entire region.

Characteristics for Sludge Removal Nozzle in Steam Generator (증기 발생기 슬러지 제거용 노즐 특성 연구)

  • Lee Sam-Goo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.37-43
    • /
    • 2004
  • Water-jet trajectory visualization and velocity deficits from a high pressurized steam-generator nozzles were experimentally observed. In order to find an optimal nozzle configuration. several parameters affecting plugging and erosion onto the steam generator tube were quantitatively analyzed. For the experiments, a high-pressurized pump (pressure in use: 200 kg/$\textrm{cm}^2$, 15 HP, 11 kW, output flow Q : 301/min) was utilized. Visualization, velocity distribution, and spray growth rate with different nozzle configurations have been mainly focused using a 2-D PDPA system. The results indicated that trajectories along the centerline regardless of their configurations has its potential core region. However, the phenomena from the peripheral part need to be meticulously considered. Accordingly, it is evident that quantitative velocity deficits at the outer region are outstanding due to the aerodynamical drag and entrainment.

A Numerical Study on a Circulation Control Foil using Coanda Effect (코앤다 효과를 이용한 순환 제어 날개의 수치적 연구)

  • J.J. Park;S.H. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.70-76
    • /
    • 2000
  • A numerical study on the viscous flow around a 2-dimensional circulation control foil is carried out for application on the field of naval architecture and ocean engineering. The governing equations are the RANS and the continuity equations. The equations are discretized by finite difference method and MAC method and the pressure poisson equation is calculate by a SOR method and an O-type non-staggered boundary fitted coordinate system which is overlapped near the slot is used to improve the numerical accuracy. Turbulence is approximated by a modified Baldwin-Lomax turbulence model. In the present paper, the Coanda effect on a 2-dimensional foil of a 20% thickness ellipse with modified rounded trailing edge has been numerically studied. The change in drag and lift of the foil with various jet momentums are calculated and compared to the experimental results to show good agreements.

  • PDF

Wind Tunnel Test on the Aerodynamic Characteristics of a PARWIG Craft (PARWIG선의 공력특성에 관한 풍동실험)

  • H.H. Chun;J.H. Chang;K.J. Paik;M.S. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.57-68
    • /
    • 2000
  • The Power Augmented Ram(PAR) effect, which blows the down stream of the propellers into the underside of the wings and hence increases the pressure between the lower surface of the wings and the sea surface, is known significantly to enhance the performance of the WIG concept by reducing the take-off and landing speeds. The aerodynamic characteristics of a 20 passenger PARWIG are investigated by wind tunnel tests with the 1/20 scale model. The efflux of the forward mounted propellers are simulated by jet flows with a blower and duct system. The lift, drag, and pitch moment of the model with various ground clearances, angles of attack and flap angles are measured for the various jet velocities, jet nozzle angles, horizontal and vertical positions of the nozzle, and the nozzle diameters. The aerodynamic characteristics of the PARWIG due to these parametric changes are compared and pertinent discussions are included. It is shown that the proper use of the PAR can increase the lift coefficient of as much as up to 4.

  • PDF

Modeling and Analysis of Fine Particle Behavior in Ar Plasma (모델링을 통한 Ar 플라즈마 중의 미립자 운동에 관한 연구)

  • 임장섭;소순열
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.1
    • /
    • pp.52-59
    • /
    • 2004
  • Recently, many researches for fine particles plasma have been focused on the fabrication of the new devices and materials in micro-electronic industry, although reduction or elimination of fine particles was interested in plasma processing until now on. In order to enhance their utilization, it is necessary to control and analyze fine particle behavior. Therefore, we developed simulation model of fine particles in RF Ar plasmas. This model consists of the calculation parts of plasma structure using a two-dimensional fluid model and of fine particle behavior. The motion of fine particles was derived from the charge amount on the fine particles and forces applied to them. In this paper, Ar plasma properties using two-dimensional fluid model without fine particles were calculated at power source voltage 15[V] and pressure 0.5[Torr]. Time-averaged spatial distributions of Ar plasma were shown. The process on the formation of Coulomb crystal of fine particles was investigated and it was explained by combination of ion drag and electrostatic forces. And also analysis on the forces of fine particles was presented.

CFD Analysis of Aerodynamic Characteristics of a BWB UCAV configuration with Transition effect (천이효과를 고려한 BWB UCAV 형상의 공력 특성 전산해석)

  • Jo, Young-Hee;Chang, Kyoungsik;Sheen, Dong-Jin;Park, Soo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.535-543
    • /
    • 2014
  • A computational simulation for a nonslender BWB UCAV configuration with rounded leading edge and span of 1.0m was performed to analyze its aerodynamic characteristics. The freestream is 50m/s over -4 to 26 degree A.o.A.s. Reynolds number based on the mean chord length is $1.25{\times}10^6$. 3D multi block hexahedral grids are used which allow good grid quality and ease to capture boundary layer. ${\gamma}-Re_{\theta}$ model as well as $k-{\omega}$ SST model is employed to assess the effect of transition for flow behavior. Drag and lift of the UCAV were well predicted while $C_M$ is under predicted at high angle of attacks and influenced by the turbulence models strongly. After assessing pressure distribution, skin friction lines and velocity field around the UCAV configuration, it was found that transition effect should be considered to enhance the prediction of aerodynamic behavior by a vortical flowfield.

Study of the flow around a cylinder from the subcritical to supercritical regimes

  • Zhang, Xian-Tao;Li, Zhi-Yu;Fu, Shi-Xiao;Ong, Muk Chen;Chen, Ying
    • Ocean Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.185-200
    • /
    • 2014
  • The objective of the present simulations is to evaluate the applicability of the standard $k-{\varepsilon}$ turbulence model in engineering practice in the subcritical to supercritical flow regimes. Two-dimensional numerical simulations of flow around a circular cylinder at $Re=1{\times}10^5$, $5{\times}10^5$ and $1{\times}10^6$, had been performed using Unsteady Reynolds-Averaged Navier Stokes (URANS) equations with the standard $k-{\varepsilon}$ turbulence model. Solution verification had been studied by evaluating grid and time step size convergence. For each Reynolds number, several meshes with different grid and time step size resolutions were chosen to calculate the hydrodynamic quantities such as the time-averaged drag coefficient, root-mean square value of lift coefficient, Strouhal number, the coefficient of pressure on the downstream point of the cylinder, the separation angle. By comparing the values of these quantities of adjacent grid or time step size resolutions, convergence study has been performed. Solution validation is obtained by comparing the converged results with published numerical and experimental data. The deviations of the values of present simulated quantities from those corresponding experimental data become smaller as Reynolds numbers increases from $1{\times}10^5$ to $1{\times}10^6$. This may show that the standard $k-{\varepsilon}$ model with enhanced wall treatment appears to be applicable for higher Reynolds number turbulence flow.

A Comparative Study on Aerodynamic Validation in Design Process of an Airfoil for Megawatt-Class Wind Turbine (메가와트 급 풍력터빈용 에어포일의 설계 단계에서의 공력성능 검증 기법 비교)

  • Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.933-940
    • /
    • 2016
  • A comparative study between a wind tunnel test and an XFOIL simulation looking at the aerodynamic performance of the airfoil for MW-class wind turbine was conducted for validation in the design stage. Tests are carried out for 21% and 30% thickness-ratio airfoils developed for 5 ~ 10 MW offshore wind turbine and the results are compared with the output from the XFOIL simulation at Reynolds number $1.0{\times}10^7$. The test is performed at a free-stream velocity of 50 m/s, corresponding to a Reynolds number of $2.2{\times}10^6$ based on the chord. Surface roughness is simulated using a zig-zag tape. Discrepancies between the results of the test and the XFOIL analysis are found, however, meaningful data for surface pressure distribution, basic performance and surface roughness effect are obtained from the tests, while useful lift-to-drag ratio data is found by the XFOIL simulation.