• Title/Summary/Keyword: pressure drag

Search Result 500, Processing Time 0.03 seconds

Characteristics for Fluid Flow in Circulating Fluidized Heat Exchanger (순환유동층 열교환기의 유동특성)

  • 이병창;안수환;김원철;배명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1291-1297
    • /
    • 2001
  • The commercial viability of heat exchanger is mainly dependent on their long-term fouling characteristics because the feeling increases the pressure loss and degrades the thermal performance of a heat exchanger An experimental study was performed to investigate the characteristics of fluid flow in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the drag force coefficients of particles in the internal flow were higher than in the external flow, in addition, they were lower with the shapes of particles being closer to the spherical geometries.

  • PDF

Experimental Study on the Flow around a Square Prism with a Splitter Plate (분리판이 설치된 정사각주 주위의 유동특성에 관한 연구)

  • Park Jong-Kyu;Seo Seong-Ho;Boo Jung Sook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.915-922
    • /
    • 2005
  • This experimental study is conducted to investigate effects of a splitter plate, which is set on the back side of a square prism in the uniform flow. The Reynolds number is $1.44{\times}10^{4}$ based on the width of the square prism. The measurement of velocity vector and pressure distribution are carried out 4 cases of length in the range of 0.5L to 2.0L with 0.5L interval and 3 cases of Position at 0L, 0.25L, 0.5L, Flow visualization is also executed by smoke-wire method to understand the mechanism of vortex formation The results show the strong vortex shedding patterns and drags are decreased effectively, when the position of splitter plate is 0L. And the drag reduction rate is in inverse proportion to the splitter plate length

Characteristics of Fluid Flow and Heat Transfer in a Fluidized Heat Exchanger with Circulating Solid Particles

  • Ahn, Soo-Whan;Lee, Byung-Chang;Kim, Won-Cheol;Bae, Myung-Whan;Lee, Yoon-Pyo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1175-1182
    • /
    • 2002
  • The commercial viability of heat exchanger is mainly dependent on its long-term fouling characteristic because the fouling increases the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow and heat transfer in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the higher densities of particles had higher drag force coefficients, and the increases in heat transfer were in the order of sand, copper, steel, aluminum, and glass below Reynolds number of 5,000.

Characteristics of Fluid Flow and Heat Transfer in a Fluidized Bed Heat Exchanger (순환유동층 열교환기내 유동과 열전달 특성)

  • 안수환;이병창;김원철;이윤표
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.315-323
    • /
    • 2002
  • The commercial viability of heat exchanger is mainly dependent on their long-term fouling characteristics because the fouling increases the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow and heat transfer in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the drag force coefficients of particles in the internal flow were higher than those in the external flow, in addition, the solid particle periodically hitting the tube wall broke the thermal boundary layer, and increased the rate of heat transfer. Particularly when the flow velocity was low, the effect was more pronounced.

An Experimental Study of Thermoelastic Instability in Automotive Ventilated Disk Brake (통풍식 자동차 디스크 브레이크의 열탄성 불안정성에 관한 실험적 연구)

  • 조병수;백병준;박복춘;김종환;김완두
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.10-17
    • /
    • 1997
  • The present study describes an experimental investigation of temperature fluctuations associated with thermal instability. Surface temperatures of brake disk and pad were monitered at various locations in a caliper type brake system during drag braking conditions. It was found that the thermal instability appeared in pad more seriously than in disk. The temperatures at various circumferential positions fluctuate synchronously, whereas the center temperature fluctuates with 180$^{\circ}$ phase difference from the outer and inner radius temperatures. The temperature and amplitude of the temperature perturbations are increased due to the increase of contact area in the center location. It was also found that the thermal instability was dominantly determined by the increase of rotation speed and pressure. And the modification of ventilation path could retard the onset of thermal instability.

Numerical Study of Drag and Noise Reduction of Electric Cable

  • Yoon, Tae-seok;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4E
    • /
    • pp.17-23
    • /
    • 2001
  • To develop the code of predicting flow-field and aeroacoustic noise by an electrical cable, a combined CFD-Acoustic analogy approach is selected. The two dimensional, unsteady and incompressible Reynolds-averaged Navier-Stokes solver with κ-ω and κ-ω SST turbulence modeling is used to calculate the near flow-field around an electric cable. Near-field results are then coupled with two-dimensional Curle's integral formulation based upon Lighthill's acoustic analogy with the assumption of acoustic compactness. To validate this code, numerical results are compared with experimental data for a circular cylinder. The simulation shows an overprediction on acoustic amplitudes, but overally speaking, the spectrum pattern of sound pressure agrees well with experiment within an acceptable amount of error. In addition, a few cross-sections of the cable were selected and tested with each other in terms of drag and radiated noise

  • PDF

Experimental and numerical aerodynamic investigation of a prototype vehicle

  • Akansu, Selahaddin Orhan;Akansu, Yahya Erkan;Dagdevir, Toygun;Daldaban, Ferhat;Yavas, Feridun
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.811-827
    • /
    • 2015
  • This study presents experimental and numerical aerodynamic investigation of a prototype vehicle. Aerodynamics forces examined which exerted on a prototype. This experimental study was implemented in a wind tunnel for the Reynolds number between $10^5-3.1{\times}10^5$. Numerical aerodynamic analysis of the vehicle is conducted for different Reynolds number by using FLUENT CFD software, with the k-$\varepsilon$ realizable turbulence model. The studied model aims at verifying the aerodynamic forces between experimental and numerical results. After the Reynolds number of $2.8{\times}10^5$, the drag coefficient obtained experimentally becomes independent of Reynolds number and has a value of 0.25.

Characteristics of Fluid Flow in a Solid Particle Circulating Fluidized Heat Exchanger (고체입자 순환유동층 열교환기의 유동특성)

  • Lee, B.C.;Ahn, S.W.;Kim, W.C.;Lee, Y.P.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.705-710
    • /
    • 2001
  • The commercial viability of heat exchanger is mainly dependent on their long-term fouling characteristics because the fouling increases the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the drag force coefficients of particles in the internal flow were higher than in the external flow, in addition, they were lower with the shapes of particles being closer to the spherical geometries.

  • PDF

Numerical Study for Drag and Noise Reduction of Electrical Cable (송전선의 항력저감 및 소음에 관한 수치 연구)

  • Yoon, T.S.;Lee, S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1716-1720
    • /
    • 2000
  • To develop the code of predicting flow-field and aeroacoustic noise by a electrical cable, a combined CFD-acoustic analogy approach is selected. The two-dimensional, unsteady, incompressible Reynolds-Averaged Navier-Stokes solver with a ${\kappa}{\omega}$, ${\kappa}{\omega}$ SST turbulence modeling is used to calculate the near-field around electrical cable. Near-field results are then coupled with two-dimensional Curle's integral formulation based upon Lighthill's acoustic analogy with an assumption of acoustic compactness. To validate this code, numerical results are compared with experimental data for a circular cylinder. The simulation shows an overprediction on acoustic amplitudes, but overally speaking, the spectrum pattern of sound pressure agrees well with experiment in an acceptable amount of error. In addition, various cross sections of a cable were selected and compared with each other in terms of drag and radiated noise.

  • PDF