• 제목/요약/키워드: pressure coupling

검색결과 444건 처리시간 0.026초

Investigation of Giant Magnetoresistance in Vacuum-Annealed NiFe/Ag Discontinuous Multilayers

  • Park, Chang-Min;Kim, Young-Eok;Shin, Kyung-Ho
    • Journal of Magnetics
    • /
    • 제2권2호
    • /
    • pp.50-54
    • /
    • 1997
  • The vacuum-annealed Ni80Fe20/Ag discontinuous multilayers were found to show giant magnetoresistive behaviors comparable to those of corresponding multilayers annealed at atmospheric pressure in a mixture of H2 and Ar. This vacuum-annealing process will offer potential advantages, enabling a continuous batch process from the deposition to the annealing. Their giant magnetoresistive behaviors were attributed to the magnetostatic coupling that are induced at the edges of the discontinuous magnetic grains. We also present our results about the multilayer patterned into a basic device for the magnetic field sensor.

  • PDF

비정렬 삼각격자 유한체적법에 의한 비압축성유동 해석 (Finite volume method for incompressible flows with unstructured triangular grids)

  • 김종태;김용모
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.3031-3040
    • /
    • 1995
  • Two-dimensional incompressible Navier-Stokes equations have been solved by the node-centered finite volume method with the unstructured triangular meshes. The pressure-velocity coupling is handled by the artificial compressibility algorithm due to its computational efficiency associated with the hyperbolic nature of the resulting equations. The convective fluxes are obtained by the Roe's flux difference splitting scheme using edge-based connectivities and higher-order differences are achieved by a reconstruction procedure. The time integration is based on an explicit four-stage Runge-Kutta scheme. Numerical procedures with local time stepping and implicit residual smoothing have been implemented to accelerate the convergence for the steady-state solutions. Comparisons with experimental data and other numerical results have proven accuracy and efficiency of the present unstructured approach.

축대칭 부표의 규칙파중 운동특성에 대한 연구 (A Stuty on the Dynamic Response of an Axisymmetric Buoy in Regular Waves)

  • 홍기용;김효철;최항순
    • 대한조선학회지
    • /
    • 제23권3호
    • /
    • pp.1-9
    • /
    • 1986
  • Herein the dynamic response of an axisymmetric buoy to regular wave is studied within linear potential theory. The buoy has a particular geometry so that it should experience minimum wave-exiting force on the vertical direction at a precribed wave number in water of finite depth. Invoking the Green's theorem a velocity potential is generated by distributing pulsating sources and doublets on the immersed surface of the buoy at its mean position. Hydrodynamic forces and moments are obtained approximately by summation of the products of linear pressure and directional mesh area over the immersed surface. Model tests are carried out to measure the wave-exciting forces, hydrodynamic forces and motion responses. The experimental results in general agree fairly well with the numerical ones. From the analytical and experimental works it is found that the pitching motion and its coupling effect affect significantly the motion characteristics of the freely-floating axisymmetric buoy in regular waves.

  • PDF

중간 열교환기를 이용한 열복합 증류탑의 운전성 향상 (Improved Operability in a Fully Thermally Coupled Distillation Column with an Intermediate Heat Exchanger)

  • 정수영;김영한
    • 제어로봇시스템학회논문지
    • /
    • 제12권9호
    • /
    • pp.945-953
    • /
    • 2006
  • Though a fully thermally coupled distillation column consumes less energy than an original column, it is not widely implemented in practice due to its operational difficulty. A new fully thermally coupled distillation column is proposed for the operability improvement, and its performance is investigated. The main improvement is the separation of a main column to give an upper and lower columns and the installation of an intermediate heat exchanger between them to regulate the fluctuation of product compositions. A proper manipulation of column pressure in the separated main columns made easy vapor flow without a compressor. The operability improvement is examined in a hexane process from the dynamic simulation using a commercial design software HYSYS. The simulation results indicate that the coupling among inputs and outputs is loosened to make easy manipulation of product compositions in the proposed distillation system.

NUMERICAL STUDY FOR A SECONDARY CIRCULAR CLARIFIER WITH DENSITY EFFECT

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Sang-Ill;Park, Jong-Woon
    • Environmental Engineering Research
    • /
    • 제10권1호
    • /
    • pp.15-21
    • /
    • 2005
  • A computer program is developed for the prediction of the flow pattern and the removal efficiency of suspended solid (SS) in a circular secondary clarifier. In this study the increased density effect by SS on hydrodynamics has been systematically investigated in terms of Froude Number (Fr), baffle existence, and a couple of important empirical models associated with the particle settling and Reynolds stresses. A control-volume based-finite difference method by Patankar is employed together with the SIMPLEC algorithm for the resolution of pressure-velocity coupling. The k-ε turbulence and its modified version are incorporated for the evaluation of Reynolds stresses. The calculation results predicts well the overall flow pattern such as the waterfall phenomenon at the front end of the clarifier and the bottom density current with the formation of strong recirculation especially for the case of decrease of Fr. Even if there are some noticeable differences in the prediction of two turbulence models, the calculated results of the radial velocity profiles are generally in good agreement against experimental data appeared in open literature. Parametric investigation has been systematically made with the Fr and baffle condition with detailed analysis.

유체-구조물 상호작용 효과를 고려한 직사각형 단면의 수조구조물의 동적 해석 (Dynamic Analysis of Rectangular Liquid Storage Containers Considering Fluid-Structure Interaction effects)

  • 박장호;권기준
    • 한국안전학회지
    • /
    • 제15권3호
    • /
    • pp.96-101
    • /
    • 2000
  • The effects of internal fluid motion have to be considered in the analysis of liquid storage containers. Therefore this thesis developed a three-dimensional boundary element-finite element method for the analysis of rectangular liquid storage containers. The irrotational motion of inviscid and incompressible ideal fluid is modeled by using boundary elements and the motion of structure by finite elements. Coupling is performed by using compatibility and equilibrium conditions along the interface. Dynamic response characteristics of rectangular liquid storage containers such as sloshing motion, hydrodynamic pressure, displacement by fluid-structure interaction are investigated.

  • PDF

포텐셜 패널과 와류 조각 연계방법을 이용한 로터 공력 해석 (Potential Panel and Vortex Particle Coupling Analysis for Rotor Aerodynamics)

  • 장지성;정인재;이덕주
    • 한국군사과학기술학회지
    • /
    • 제16권4호
    • /
    • pp.481-485
    • /
    • 2013
  • Rotor wake causes unsteady aerodynamics of rotor blade. So, accurate prediction of wake is very important and vortex method is good solution for this problem. Aerodynamic force of the rotor blade is calculated by potential panel method and the rotor wake is simulated by vortex particle method. The vortex particle method is easier to treat wake-body interaction and has better performance to expect the effect of ground and fuselage interaction. Rotor in hovering and forward flight condition is simulated through these methods. Thrust and surface pressure of rotor are compared with experiment data.

PFP 플라즈마중합에 의한 아크릴 섬유사의 수축률 감소 (Reduction of Contraction Coefficient of Acrylic Yarn by PFP Plasma Polymerization)

  • 강영립
    • 한국응용과학기술학회지
    • /
    • 제16권4호
    • /
    • pp.287-291
    • /
    • 1999
  • Plasma polymerization of Perfluoropropene(PFP) was carried out in a tubular type reactor. The Plasma was generated by coupling inductively under the fixed discharge power of 25W and the pressure of 100, 140, and 200 mTorr of radio frequency generator. PFP plasma polymerization thin films were deposited in acrylic yams. For 1 hours, the acrylic yams treated and untreated by PFP plasma were immersed in boiling water. Then the reduction of contraction coefficient of acrylic yams were measured respectively. As a result of this experiment, untreated acrylic yams were reduced around 23%, while treated yams were contracted about 18-2%.

The Application of FBNWT in Wave Overtopping Analysis

  • ;;현범수
    • 한국해양공학회지
    • /
    • 제22권1호
    • /
    • pp.1-5
    • /
    • 2008
  • A 2-D Fluent-based numerical wave tank(FBNWT) capable of simulating wave propagating and overtopping is presented. The FBNWT model is based on the Reynolds averaged Naiver-Stokes equations and VOF free surface tracking method. The piston wave maker system is realized by dynamic mesh technology(DMT) and user defined function(UDF). The non-iteration time advancement(NITA) PISO algorithm is employed for the velocity and pressure coupling. The FBNWT numerical solutions of linear wave propagation have been validated by analytical solutions. Several overtopping problems are simulated and the prediction results show good agreements with the experimental data, which demonstrates that the present model can be utilized in the corresponding analysis.

탄환 충격파 측정용 방수 음향센서 개발 (Development of Waterproof Acoustic Sensor for Shockwave Measurement)

  • 허신;이덕규
    • 센서학회지
    • /
    • 제28권5호
    • /
    • pp.318-322
    • /
    • 2019
  • In shooting training, an impact point identification system that uses the impact wave of the bullet to check the impact point in the target plate has been recently used. Acoustic sensors used in these systems must be able to detect shock waves of high sound pressure levels and be both waterproof and dustproof for rainy weather and dusty environments, respectively. In this study, membranes with excellent waterproof, dustproof, and sound transmitting characteristics were selected through a characteristics test; a protection cap was installed to install the selected materials. After coupling the produced protection cap to the acoustic sensor housing, the sensitivity and phase characteristics of the acoustic sensor were checked. Through the waterproof and dustproof test, the performances of its sensitivity and phase characteristics were confirmed. Finally, the normal shockwave of a 5.56 mm diameter bullet was measured using a shockwave detection signal collecting plate equipped with a prototype of the acoustic sensor at a 100 m firing range.