• Title/Summary/Keyword: pressure comfort

Search Result 229, Processing Time 0.024 seconds

Biomechanical Analysis of Trail Running Shoes Applied to Korean Shoe-Lasts (한국인 족형을 적용한 트레일 러닝화의 생체역학적 분석)

  • Park, Seung-Bum;Lee, Kyung-Deuk;Kim, Dae-Woong;Yoo, Jung-Hyeon;Kim, Kyung-Hun;An, Chang-Shin;Lee, Tae-Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.221-230
    • /
    • 2010
  • The purpose of this study was to analyze biomechanical factors of trail running shoes applied to korean shoe-lasts. 10 healthy male subjects with an average age of 37.2 years(SD=8.28), weight of 69.6 kg(SD=10.56) and a height of 171 cm(SD=4.93) were recruited for this study. Ten males walked on a treadmill wearing four different shoes. Foot pressure data was collected using a Pedar-X mobile system(Novel Gmbh., Germany) operating at the 1000 Hz. Surface EMG signals for tibialis anterior, gastrocnemius, vastus lateralis and biceps femoris were acquired at 1000 Hz using Noraxon TeleMyo DTS system(Noraxon Inc., USA). Foot pressure and leg muscle fatigue were measured and calculated during walking. The results are as follows: After walking 60 minutes, Type A showed a lower MPF. MPF values were significantly different from each muscle(p<.05). Therefore, Type A shoe might decrease muscle fatigue in the legs while walking. In addition, Type It showed that Type A shoe has the highest contact area and the lowest maximum pressure. As a result of the analysis, Trail running shoes will use a new design to reduce muscle fatigue and are expected to increase comfort and fitting.

Vehicle Vibration Study by Tire Flat Spot (타이어 플랫 스팟에 의한 차량진동 연구)

  • Park, Ju-Pyo;Choi, Jung-Hyun;Lee, Sang-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1395-1400
    • /
    • 2007
  • Tire flat spot is a deformation which occurs around the contact patch during long-period parking and does hardly recovered even after driving. The deformation makes a tire self-excited and ride comfort gets worse. In this study, it is shown that the flat spot can be evaluated by measuring change in radial run out or force. Its effects on vibration at vehicle floor and steering wheel are also revealed. Finally it is shown that the flat spot is likely to occur if the inflation pressure is low and the tire is suppressed by a heavy load at a high temperature.

  • PDF

Optimization of Heat Pump Systems (열펌프의 성능 최적화에 관한 연구)

  • Choi, Jong-Min;Yun, Rin;Kim, Yong-Chan
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.22-30
    • /
    • 2007
  • An expansion device plays an important role in optimizing the heat pumps by controlling refrigerant flow and balancing the system pressures. Conventional expansion devices are being gradually replaced with electronic expansion valves due to increasing focus on comfort, energy conservation, and application of a variable speed compressor. In addition, the amount of refrigerant charge in a heat pump is another primary parameter influencing system performance. In this study, the flow characteristics of the expansion devices are analyzed, and the effects of refrigerant charge amount on the performance of the heat pump and the variation of compressor speed are investigated at various operating conditions. Mass flow rate through capillary tube, short tube orifice, and EEV was strongly dependent on the upstream pressure and subcooling. The heat pump system is very sensitive with a variation of refrigerant charge amount. The performance of it can be optimized by adjusting the flow rate through expansion device to maintain a constant superheat at all test conditions.

  • PDF

The Change of the Vital Sign by the Variables of Stimulated Areas in Interferential Current Treatment (간섭 전류 치료의 자극부위에 따른 활력징후의 변화)

  • Park, Young-Han
    • Journal of Korean Physical Therapy Science
    • /
    • v.16 no.3
    • /
    • pp.1-9
    • /
    • 2009
  • Background: The purpose of this study is to have examined the influence on the blood circulation by comparing the differences between stimulating the sympathetic ganglion and the muscle group among the stimulation variables in interferential current stimulation. Method: The object of the study is the twenties(M=8, F=12), who are in great condition and have no pathological report for the blood circulation influence. The intensity of the inferential current stimulation is the medium degree, 100 bps constant current, which is the comfort and degree to confirm the muscle contraction. The areas stimulated are the stellate ganglion area in the seventh cervical vertebrae and the forearm muscle area. Results: We have made sure that there is no change in blood pressure and pulse and that the change in the skin temperature occurred highly. Conclusion: In considering the change of the blood circulation in case of stimulation area by the inferential current stimulation, we have seen that stimulating the sympathetic ganglion area is more effective than stimulating muscle area directly.

  • PDF

Effect of Wearing Micro-Current Apparel on the Physiological Response (미세전류를 이용한 의류제품 착용이 인체 생리적 반응에 미치는 영향)

  • Kang, Mi-Jeong;Kwon, Young-Ah
    • Fashion & Textile Research Journal
    • /
    • v.13 no.6
    • /
    • pp.959-965
    • /
    • 2011
  • The purpose of this study was to evaluate the effect of wearing induced micro current brassiere on the physiological responses of women. Four women participated to wear a different brassiere condition: with and without micro current chips. Subjects were carried out after wearing the induced micro current brassiere for 120minutes. Eardrum temperature, skin temperature, blood pressure, heart rate, thermal perception, humid perception, and comfort perception were obtained. The results were as follows. The brassiere with micro current chips showed better performance on weight loss than the brassiere without micro current chips. Participants in a higher level of BMI were more likely to lose greater weight. Mean skin temperatures decreased with micro current chips. Participants felt more comfortable for walking in micro current brassiere than in brassiere without micro current chips.

A Study on the Squeal Noise generated by Self-excited Vibration in Friction surface (마찰면에서 자여 진동에 의해 발생되는 스퀼 소음에 관한 연구)

  • 이해철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.90-96
    • /
    • 1998
  • There are various noises generated by friction. Among the rest, eliminating squeal noise generated during braking is an important task for the improvement of vehicle passengers' comfort. The parameters affecting brake squeal noise are the material properties of the braking pad, the dynamic properties of the brake parts and the dimensions of the brake assemble etc. Also, the squeal noise changes its inherent form(i.e. its sound pressure level and its frequency) with the normal load and sliding speed. In this study, the characteristics of brake squeal noise generated by friction is analyzed experimentally. The experiment focused on the analysis of friction self-excited vibrationand squeal noise level. Friction self-excited vibration is caused by the dry friction between pads and rotor, and occurs as a function of their relative sliding speeds. And Friction self-excited vibration is raised the brake squeal noise.

  • PDF

Reliability Evaluation of Air Spring for Railway Vehicle (철도차량용 공기스프링 실차시험 및 신뢰성 평가)

  • Woo Chang-Su;Kim Wan-Doo;Choi Kyung-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.182-187
    • /
    • 2005
  • Air spring system was widely accepted for railway vehicle secondary suspension to reduce and absorb the vibration and noise. The low natural frequency ensures a comfortable ride and an invariably good stiffness. In this paper, the characteristics and durability test was conducted in laboratory by using servo-hydraulic fatigue testing system to reliability evaluation of air spring for electric railway vehicle. The experimental results show that the characteristics and durability of domestically developed productions are shown in good results. And to guarantee the adaption of air spring, the ride comfort and air pressure variation were measured in train test on subway line.

Durability Evaluation and Train Test of Air Spring for Electric Railway (전동차용 공기스프링 내구성평가 및 실차시험)

  • 김완두;우창수;이학주;정승일;김석원;김영구;최경진;이동형
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.468-475
    • /
    • 2000
  • An air spring was accepted for rail vehicle secondary suspension to reduce and absorb tile vibration and the noise. The air spring for the electric railway was developed with domestic technology, which consisted of a cord reinforced rubber bellows, a upper plate, a lower plate and a stopper rubber spring The fatigue test was conducted in laboratory by using servo hydraulic fatigue testing system to verify the durability. And to guarantee the adaptation of this air spring, the ride comfort and the air pressure variation were measured in train test on Boondang line.

  • PDF

Transient Flow Characteristics of the Room Air Conditioner (룸에어컨 내부 유동의 과도현상에 대한 수치적 연구)

  • Seo, Hyeon-Seok;Kim, Jin-Baek;Kim, Youn-Jea
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.526-529
    • /
    • 2008
  • Air Conditioner has become a popular comfort providing device since two decades, whether in an office or home especially for warm and wet climate countries. The RAC (Room Air Conditioner) is widely used in various working spaces and residences. It composed of heat exchager, cross-flow fan, stabilizer, rearguider and blade of diffuser region, etc. In this study, numerical analyses based on the prediction of transient phenomena were carried out to investigate the flow characteristics in the RAC, including the impeller, the rearguider, the stabilizer and the blade of the diffuser region. Using a commercial code, FLUENT, the velocity, pressure and streamlines were obtained with unsteady, turbulent flow and no-slip condition. The angular velocities of impeller are located in the 900 rpm. Turbulent closure was achieved using a standard k-${\varepsilon}$ model. A moving reference frame (MRF) approach was adopted to simulate the flow field generated by impeller in the RAC. Results were graphically depicted with various geometrical configurations and operating conditions.

  • PDF

Damping performance Analysis for an Electronically Contralled Shock Absorber (연속 가변형 충격흡수기의 감쇠성능 해석)

  • 박재우;이동락;백운경
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.192-201
    • /
    • 2001
  • Analyzing internal structure, flow rate and dynamic behavior characteristics of electronically controlled shock absorber, damping performance limit is identified to comprise the two reciprocal characteristics of ride comfort and handling safety. Regardless of its lower performance than the active suspension control system, the semi-active suspension control system has been taking interest because of its absolutely higher performance than passive suspension system. Since the pervious studies have been concentrated mostly on analytic aspect and survey on the internal structure of the shock absorber remain insufficient, the main discourse of this paper is focused on analyzing the nonlinear shock absorber which varies the damping force of semi-active suspension system and the dynamic characteristics of the solenoid valve, a sort of pressure valve, and proposing the design factors of importance.

  • PDF